Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Molecular analysis of a major antigenic region of the 240-kD protein of Mi-2 autoantigen.
Q Ge, … , M B Frank, I N Targoff
Q Ge, … , M B Frank, I N Targoff
Published October 1, 1995
Citation Information: J Clin Invest. 1995;96(4):1730-1737. https://doi.org/10.1172/JCI118218.
View: Text | PDF
Research Article

Molecular analysis of a major antigenic region of the 240-kD protein of Mi-2 autoantigen.

  • Text
  • PDF
Abstract

Anti-Mi-2 autoantibody is strongly associated with dermatomyositis and found in sera of 20% of patients. Mi-2 antigen contains at least eight components and previous evidence suggested that the 240-kD protein was the antigenic component for at least some sera. In this study, anti-M-2 patient sera were used to screen human thymocyte and HeLa cell lambda gt11 expression libraries, and two clones from each had plaques specifically reactive with anti-Mi-2 sera. Studies with affinity-purified antibody supported the identification of the clones. All of 44 anti-Mi-2 sera reacted with the plaques, but none of 44 control sera reacted significantly. The cDNAs were identical, and full sequencing of one revealed an open reading frame spanning a 1,054-bp insert. Rescreening the library with the cDNA yielded a 1,589-bp cDNA that continued the open reading frame. The Mi-2 cDNA hybridized to a single 7.5-8.0 kb mRNA of HeLa cells, by Northern blot. Rabbit antiserum directed at a portion of the cDNA product reacted with HeLa 240-kD Mi-2 protein. The sequence was notable for four potential zinc-fingers and several charged regions. The protein encoded by the cDNA produced in vitro reacted with only one of five of the Mi-2 sera. These findings indicate that the Mi-2 240 kD is a novel protein that is antigenic for all Mi-2 sera, and strongly suggests that a major common epitope is conformational in nature.

Authors

Q Ge, D S Nilasena, C A O'Brien, M B Frank, I N Targoff

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 256 0
PDF 46 28
Figure 0 8
Scanned page 130 9
Citation downloads 18 0
Totals 450 45
Total Views 495
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts