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Abstract

Recent evidence links osteoporosis, a disease of bone remod-
eling, to changes in the dynamics of parathyroid hormone
secretion. Weuse nonlinear and linear time series prediction
to characterize the secretory dynamics of parathyroid hor-
mone in both healthy human subjects and patients with
osteoporosis. Osteoporotic patients appear to lack the peri-
ods of high predictability found in normal humans. Our
results may provide an explanation for why an intermittent
administration of parathyroid hormone is effective in restor-
ing bone mass in osteoporotic patients. (J. Clin. Invest. 1995.
95:2910-2919.) Key words: parathyroid hormones * osteo-
porosis * bone remodeling * osteoclast * osteoblast

Introduction

Fluctuations in parathyroid hormone (PTH)l plasma concentra-
tion over short time intervals seem to play an essential role in
maintaining the physiological balance of bone resorption and
bone formation ( 1-4). The concentration of PTH in the blood-
stream of healthy human subjects fluctuates in an episodic, pul-
satile manner with a mean PTH pulse frequency between 1
pulse per hour (large pulses) and 1 pulse per 10 min (small
pulses) (1). In the physiological bone remodeling process, bone
resorption by osteoclastic cells and bone formation by osteo-
blastic cells are functionally coupled (5). PTHhas been shown
to act directly on osteoblastic cells whereas its action on osteo-
clastic cells is mediated by local factors (6-10). Animal experi-
ments have demonstrated that an intermittent administration
with daily injections of PTH increases bone mass and normal
connectivity, whereas a continuous administration by infusion
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at the same mean rate leads to a net loss of bone mass and of
bone structure (11-13). The bone becomes more porous, as
seen in osteoporotic patients, suggesting that this disease is
caused by a disruption of the normal temporal dynamics of PTH
secretion. In accordance with these results, a therapy protocol
with daily injections of PTHproduced the largest gain in trabec-
ular bone mass in osteoporotic patients (14, 15).

The evidence linking the secretion of PTH to bone remodel-
ing suggests that secretory patterns in osteoporotic patients and
healthy subjects may be different. Until recently, a comparison
of the dynamics of PTH secretion in healthy and osteoporotic
subjects was not possible because data at a sufficiently fine
temporal scale were not available. In a recent experiment (1),
we measured PTH serum concentration at 2-min intervals in
both healthy and osteoporotic subjects (Fig. 1). These data now
offer a unique window into the dynamics of PTH secretion in
both subject groups.

Traditional approaches to identifying dynamical disease
states have involved examination of the time series and power
spectra of physiological variables for evidence of changes in
periodicity or regularity of a process (16, 17). Unfortunately,
healthy subjects cannot be distinguished from patients with os-
teoporosis using the mean or variance of PTHserum concentra-
tion (Fig. 1) or the power spectrae (Fig. 2). These classical
techniques for time series analysis do not appear well suited to
discovering differences in the dynamics of such irregular time
series.

Time series prediction has proved effective in characterizing
irregular complex time series and separating deterministic (cha-
otic) behavior from some forms of random behavior (18-20).
Most of this work has focused on distinguishing chaotic behav-
ior from zero order (independent identical distributed) and first
order (the series of first differences is independent identical
distributed) stochastic processes, and more complex forms of
correlated processes have not been extensively analyzed. Recent
work shows that such a predictive model is particularly effective
when applied to short time series that contain on the order of
a few hundred data points (19, 20). Systematic differences in
the dynamics may lead to very different degrees of predictabil-
ity. Such a predictive model has recently been applied to time
series analysis of electroencephalogram (EEG) data (21).

Wedescribe a technique for identifying differences in the
dynamics of PITH secretion between healthy subjects and pa-
tients with osteoporosis using time series prediction. A single
predictor trained on pooled data from several healthy subjects
as well as predictors individually trained on each time series
were used to predict time series from both healthy and osteopo-
rotic subjects. Differences in the rate at which predictions di-
verged from the true evolution of the time series were used to
divide healthy subjects into groups exhibiting states of low
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Figure 1. Representative time series of PTH( 1-84) serum concentration (4-h period). (a) Four healthy subjects (total of nine subjects), mean PTH
serum concentrations: (o) 60.5±9.5 ng/liter; (o) 47.8±7.4 ng/liter; (o) 43.7±5.5 ng/liter; (-) 31.9±6.1 ng/liter; (b) Four osteoporotic patients
(total of six patients), mean PTH serum concentrations: (o) 53.3±6.7 ng/liter; (o) 32.6±3.9 ng/liter; (o) 30.9±15.9 ng/liter; (-) 18.8±9.4 ng/
liter. Whether a PTH serum concentration time series is from a healthy subject or an osteoporotic patient cannot be determined from the mean

concentration nor from the standard deviation.

and high predictability. Examination of longer time series from
several healthy subjects suggests a tendency to switch between
these states of low and high predictability. Osteoporotic patients
exhibited divergence rates similar to the healthy subjects in the
low predictability group, and none showed any evidence of the
highly predictable behavior found in some healthy subjects.
These differences could not be found using "classical" methods
of time series analysis. Our findings suggest, that osteoporosis
may be a disease in which the dynamics of hormonal fluctua-
tions is altered in a subtle but critical manner.

Methods
Subjects. Twelve healthy men (aged 24-42 yr), three women with
postmenopausal osteoporosis (aged 55-62 yr), and three men with

idiopathic osteoporosis (aged 31-42 yr) took part in this study. The
studies reported were approved by the local Committee on Medical
Ethics, and all subjects gave their informed written consent. All healthy
subjects had an unremarkable personal and family medical history. Phys-
ical examination, electrocardiogram, white blood count, differential,
protein, creatinine clearance, albumin, total calcium, sodium, potassium,
magnesium, chloride, creatinine, triglycerides, cholesterol, glucose, and
nitrogen were normal in both groups. In addition to parameters to ex-

clude secondary osteoporosis and other diseases, we measured alkaline
phosphatase, osteocalcin, calcium, ionized calcium, and phosphate.
Body weight, diet, and daily physical activity were comparable between
groups. In the patients with osteoporosis bone density was assessed
by single-energy computed tomography (the mean value was 49% of
reference) and dual-energy computed tomography (the mean value was

52.6% of reference). Lateral spine (thoracic and lumbar) x-rays were
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obtained from all patients. The typical configuration of osteoporotic
vertebral bodies was present in all subjects. Vertebral fractures, i.e.,
height reduction of > 25% was present only in two of the patients.
Some of the subjects in this study as well as the details on design and
measurements are described in more detail in a previous publica-
tion (1).

Sampling protocol. In three of the healthy subjects, PTH serum

concentrations were measured in blood samples taken every 2 min over

an extended period (21 h for one subject and 24 h for the other two).
In the remaining nine healthy subjects and the six osteoporotic patients,
PTH serum concentrations were also measured at 2-min intervals, but
over much shorter periods of time (3.5-9 h). All PTH concentrations
were measured in duplicate using either a two-site chemiluminometric
(sandwich) immunoassay or an intact PTH immunoradiometric assay.
Blood samples (1 ml) were drawn via a central venous catheter. The
specimens were then centrifuged at 40C and frozen at -20'C within 45
min and stored for 1-3 mo. 24 h before sampling no alcohol intake,

4

Figure 2. Power spectra of the time series from
Fig. 1. (a) Healthy subjects; (b) osteoporotic
patients. All spectra of both groups are broad
and quite flat up to the Nyquist frequency (4.17
mHz), characteristics common to stochastic and
chaotic dynamic processes. None of the spectra
exhibits strong spectral features that would indi-
cate strong periodic behavior and could be easily
used for reliable classification.

medication, or caffeine was permitted. The central venous catheter was

placed 1 h before the initiation of blood sampling. Throughout the study,
the subjects rested in bed.

Measurement of PTH serum concentrations. The PTH concentra-
tions of all serum samples were measured in duplicate. To avoid in-
terassay variations, all samples from an individual subject were analyzed
in the same assay. The 21- and 24-h PTH serum concentration time
series and half of the other PTH time series were measured using a

two-site chemiluminometric (sandwich) immunoassay (Magic Lite In-
tact PTH; Ciba-Corning Diagnostics Corporation, Medfield, MA; intra-
assay coefficient of variation [CV] 3.4%, interassay CV 4.3%). The
other half of the results were obtained with the Allegro intact PTH
immunoradiometric assay system (Nicols, San Juan Capistrano, CA;
intra-assay CV 5.1%; interassay CV 7.8%). Exactly one third of the
samples of normal subjects and one third of the samples of osteoporotic
patients were analyzed with the chemiluminometric immunoassay and
in both groups two thirds with the immunoradiometric assay.

2912 Prank Nowlan, Harns, Kloppstech, Brabant, Hesch, and Sejnowski

a

._

-0

a)

Stj
-!!



x(t-15)

x(t-14)

x(t-13)

x(t-12)

X(t-ll)

x(t-10)

x(t-9)

X(t-8)

x(t-7)

x(t-6)

A

x(t)

x(t-5)

x(t-4)

x(t-3)

x(t-2)

X(t-l)

Figure 3. Architecture of the prediction network. The estimate of the
current value of the time series (2(t)) is the weighted sum of the
previous 15 values of the time series. Gray squares represent the weights
of the network related to the samples of the time series (x(t - 15),

, x(t - )). The size of the white or black square inside each
gray square indicates the magnitude of the weight assigned to that
sample (black squares: negative weights, white squares: positive
weights).

Time series prediction. In this approach to time series analysis, we
find models that attempt to predict the next value x(ti ) of a time series
from a number of previous values:

X(ti) =f(X(ti-1), X(ti -2) . X(ti-.m)) + 4e

where x(ti-1) is the value at time ti,1, m is the number of previous
values used for prediction, and Ej represents noise or fitting error. The
model f is selected by minimizing some measure of misfit (such as
mean square error) over a set of training examples drawn from observed
samples of the time series. When the predictive model is linear
(f(x(ti-I), . . ., x(ti-m)) = Makx(tijk,)), this type of modelling is
equivalent to fitting an autoregressive (AR) model of order m to the
data. By modeling the series of first differences using a similar form
of predictor we can also fit autoregressive integrated moving average
(ARIMA) models, and nonlinear extensions of these models, to a
data set.

In this study we used feedforward networks to predict future values
of the time series of PTH serum concentration (Fig. 3, Table I). This

Table I. Coefficients of the Predictive Model

Coefficient Weight value

x(t - 1) 1.339
x(t - 2) -0.350
x(t - 3) 0.022
x(t - 4) -0.004
x(t - 5) 0.028
x(t - 6) -0.102
x(t - 7) 0.139
x(t - 8) -0.177
x(t - 9) 0.065
x(t - 10) -0.073
x(t - 11) 0.266
x(t - 12) -0.217
x(t- 13) -0.013
x(t - 14) 0.029
x(t - 15) 0.046
Bias 0.566

Coefficients with values less than 0.1 are not significant and may be
removed from the model without qualitatively effecting the results of
predictions on the test subjects.

form of a predictive model was chosen because it is relatively easy to
control over-fitting using regularization functions and cross-validation
and such models have proven to be effective predictors for other short,
noisy time series (22-24). This class of model implicitly includes the
classes of moving average (MA) and AR models (25).

Networks were trained to predict a single time step into the future.
To predict multiple steps into the future the single-step map was iterated
by feeding back the output of the network into its input. If the predicted
value one step into the future is

XAti) = f Wti-1)s X(ti-2), * * * , X(ti-.)),

then the predicted value two steps into the future is computed as

A(ti+1) = f( (ti), x(ti-1) .* * * , X(tim+i))-

This process can be repeated to predict any number of steps into the
future. The correlation between observed (xi) and predicted (x ) values
was measured using

arv = 2(X)o2(xi)

where arv is the average relative variance, the angle brackets denote an
average over all values of the indexed variable, and a2(xi ) denotes the
variance of the indexed variable. This statistic is one measure of the
regularity of a time series, and other forms of regularity measure have
previously been used to discriminate among hormone secretion time
series (26).

To improve the signal-to-noise ratio the raw PTH time series were
filtered before prediction by an acausal filter (27) (rolloff frequency q
= 0.002), which does not affect certain nonlinear measures. To avoid
any bias due to the filtering process, we selected this particular type of
filter because we also used neural network predictors with nonlinear
activation functions.

Training and testing of predictive models. Before selecting a distinct
network architecture for our detailed analysis, we explored a large vari-
ety of different network architectures, applying linear as well as nonlin-
ear sigmoidal feedforward networks with 1-30 input units, 0-50 hidden
units, and 1 output unit. A regularization technique (23) was used to
control overfitting to the training data, with the weight assigned to
the regularization term chosen by cross validation. The value for the
regularization term varied from l0-s for the nonlinear networks to 10O'
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for the linear networks. The weights were updated by a conjugate gradi-
ent descent method. (For a linear model, this fitting technique is formally
equivalent to a least-squares linear fit.)

Networks were trained using pooled time series data from the three
healthy male subjects whose PTH serum concentrations were measured
every 2 min for an extended period. Furthermore we trained our net-
works using pooled time series data from the osteoporotic patients.
Using such a network for testing the osteoporotic subjects we used a
"leave one out technique," where the time series actually being tested
is left out of the training procedure. The performances of these networks
were compared on a validation set that was not used during training
and the architecture with the best performance was a feedforward neural
network with one layer of weights, linear activation functions, 15 input
units, and 1 output unit (Fig. 3, Table I). This network is equivalent
to a 15th order AR model, however the regularization procedure yields
a final model with only seven significant coefficients (Table I). This
model was also the best predictor of the PTH time series in the 15
test subjects and also the best discriminator between the normal and
osteoporotic subjects of the 76 different models of various orders that
we fit to the data. Furthermore we used the 15 input units-i output
unit network as well a variety of other linear and nonlinear network
architectures to perform individual training and testing of each normal
and osteoporotic time series. To account for possible nonstationarity in
our data (Fig. 1) we also fitted the best predictive ARIMA model
individually to the first two thirds of each time series using a variety
of different AR, I, and MAorders, which were identified with the help
of the autocorrelation and partial autocorrelation function (using the
MATLABSystem Identification Toolbox; The Mathworks, Inc., Natick,
MA). After fitting, the last third of each time series was predicted by
the fitted ARIMA model. Furthermore we fitted the best predictive
ARIMA model to the pooled PTH data from the three healthy subjects
and evaluted the predictive ability on each of the nine remaining time
series from normal subjects and six time series from osteoporotic pa-
tients. Wethen compared the predictive results to those obtained from
individual training and testing of each time series and also to training
on pooled data using the neural network approach.

The 15 input units-I output unit network was used for most of the
simulations discussed in the remainder of this paper. It was used to
predict the time series from an additional 15 test subjects; 9 healthy
subjects and 6 patients with osteoporosis.

Our use of a single predictive model for all time series differs from
other studies, which used a different predictor for each time series ( 19,
22, 24). Wechose this approach because we were primarily interested
in discriminating the PTH secretory patterns of healthy subjects from
patients with osteoporosis on the basis of relative predictability rather
than estimating the absolute degree of predictability in normal PTH
concentration time series. However, we performed additional experi-
ments in which each time series was trained (on the first two thirds of
each time series) and tested (on the last third) with a single individual
neural network predictor using linear as well as nonlinear activation
functions.

The arv was computed for each of the 15 test subjects as a function
of the number of steps predicted into the future (Table II). The number
of prediction steps after which the arv exceeded 0.5 was recorded for
each time series. This number is a measure of the number of prediction
steps into the future for which the network is useful as a predictor for
the system dynamics. An arv of 1.0 may be achieved simply by always
guessing the mean of the time series as the predicted value, so a predictor
that meets our criterion is on average twice as good as predictor that
entirely ignores the dynamics of the time series.

To investigate the possible sensitivity of our prediction method to
the frequency at which the PTH serum concentration was measured, we
repeated all our prediction simulations using every 2nd and 5th data
point of the original PTH concentration time series (4- and 10-min
intervals, respectively).

Results
Evidence for states of low and high predictability. Using the
15 input unit-I output unit neural network trained on pooled

Table I. Number of Prediction Steps (2 min) Until the Prediction
Error (arv) Reaches a Value of 0.5

Subject Prediction step

Normall 12
Normal2 11
Normal3 8
Normal4 11
Normal5 4
Normal6 5
Normal7 5
Normal8 4
Normal9 3

Osteoporoticl 2
Osteoporotic2 4
Osteoporotic3 4
Osteoporotic4 2
Osteoporotic5 3
Osteoporotic6 6

The linear 15 input-i output neural network was trained on pooled
data from healthy subjects.

data from healthy subjects, we found that the PTH serum con-
centration time series of the group of healthy subjects exhibits
two different types of behavior. In four subjects, the time series
could be predicted between 8 and 12 time steps into the future
before the arv exceeded 0.5 (Fig. 4). This group of subjects
exhibited high predictability. In the remaining five healthy sub-
jects, the time series could be predicted only three to five steps
into the future before an arv of 0.5 was exceeded. This group
of subjects exhibited low predictability. To verify the existence
of these two groups, we clustered the data using a k-means
procedure and compared the fit of the resulting two normal
component model to a single normal fit, using a likelihood ratio
test. The two component model provided a significantly better
fit than a single component model (P < 0.03).

Weused the two-component model to classify the predict-
ability of the osteoporotic time series and found that all of
the osteoporotic patients exhibited low predictability under this
classification criterion. The PTHserum concentrations from the
osteoporotic subjects could be predicted only two to six time
steps into the future before the arv exceeded 0.5. Significant
correlations between the age of the subjects, their mean PTH
serum concentration, and the predictability could not be found.
These categories of predictability could not be identified by
computing the mean or the variance of the PTH serum concen-
tration time series (Fig. 1) nor by computing the power spec-
trum of each time series (Fig. 2).

We tested the significance of differences in predictability
between various groups of test subjects using a Mann-Whitney-
Wilcoxon rank test (Table III). There was evidence that the
nine normal subjects as a group were more predictable than
the osteoporotic patients. However, there was much stronger
evidence that the four normal subjects falling in the highly
predictable category were more predictable than either the os-
teoporotic patients or the normal subjects falling in the low
predictability category. This suggests that although high predict-
ability may be an indicator of health, low predictability alone
is not necessarily a strong indicator of disturbances in PTH
secretion.
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Figure 4. Summary of predictability for
healthy subjects and osteoporotic pa-
tients. (a) arv (prediction error) vs. the
number of prediction steps (2-min inter-
val): healthy subjects (-), osteoporotic
patients (0), colored noise (v) with a
power spectrum matched to the training
data. The dashed line indicates an arv of
0.5 used as the criterion for separating
the healthy subjects from the osteoporotic
patients. For clarity, only values with an
arv < 2.0 are shown. The entire data set
is shown in the inset in b. (b) Histogram
of the number of subjects vs. the predic-
tion step (2-min interval) at which the
arv exceeds a value of 0.5. The inset
shows the arv (on a logarithmic scale)
vs. the number of prediction steps for all
subjects (see detail in a).

There were also qualitative differences in the graphs of
arv versus the number of prediction steps between the healthy
subjects and osteoporotic patients (Fig. 4 a). All of the healthy
subjects showed a "saturation" of the arv as the number of
prediction steps increased, although this saturation occurred
above an arv of 1.0 for subjects exhibiting low predictability.
The osteoporotic subjects and the time series of colored noise
showed, with one exception, a linear increase of the arv with
the number of prediction steps.

Further analysis of the long PTH concentration time series
from the healthy subjects showed that regions of low and high
predictability could be found within each of the long time series
(Fig. 5). The arv value was computed for a continuously run-

ning 60 data points (2 h) window for the entire PTHtime series

and recorded for all of the longer PTH time series for the 1-

15 time steps ahead prediction (Fig. 5 a), as well as the time
step where the prediction error arv reached a value of 0.5 (Fig.
5 b). The time series were then divided into segments at points
where the predictability (in prediction steps) was less than 1

SD from the mean predictability across the entire time series
(low predictability). This procedure divided each time series
into segments of high and low predictability.

The periods of high predictability were on average more

common, although the exact proportion of regions of high and
low predictability varied among the long time series ( 10% low,
21% low, and 23% low). The length of the periods of low
predictability also showed considerable variation (2 h 24 min
to 4 h 55 min). The short time series from the nine healthy
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Table III. Differences in Predictability for Various Groups
of Subjects

Group 1 Group 2 Significance

Normals Osteoporotics P < 0.03
(n = 9) (n = 6)
7.0±3.5 3.5±1.5

Pred. normals Nonpred. normals P < 0.01
(n = 4) (n = 5)
10.5±1.7 4.2±0.8

Pred. normals Osteoporotics P < 0.01
(n = 4) (n = 6)
10.5±1.7 3.5±1.5

The mean±SD of the number of steps required to reqch an arv of 0.5
is shown for each group. The final column shows the significance of
the hypothesis that the number of prediction steps required to reach an
arv of 0.5 is greater in group 1 than in group 2. All tests are based on
a nonparametric Mann-Whitney-Wilcoxon test (U statistic).

subjects and six osteoporotic patients did not contain enough
data points to reliably identify distinct regions of low and high
predictability within these time series.

Sensitivity of results. In the following, Mann-Whitney-Wil-
coxon rank tests were used to obtain the statistical results. Using
the 15 input units- I output unit neural network as an individual
predictive approach, the degree of predictability in the healthy
group was significantly (P < 0.05) lower (3.9±1.2 time steps)
than in the case of the predictor trained on the pooled data
from healthy subjects (7.0±3.6). In the case of the osteoporotic
patients there was no significant difference between the pre-
dictive results using the predictor trained on pooled healthy data
(3.5±1.5 time steps) and individually trained (2.3±0.8 time
steps). However using the criterion of absolute predictability
for each time series the normal group (3.9±1.2 prediction steps)
was significantly (P < 0.02) further predictable into the future
than the osteoporotic group (2.3±0.8 prediction; Table IV).

Fitting the best predictive ARIMA model (AR = 8, I = 1,
MA= 9) to the pooled data from three healthy subjects and
testing the predictability of this model on the remaining time
series, we could separate the normal group by a significantly
(P < 0.02) higher predictability (4.7+1.3 prediction steps)
compared with the osteoporotic group (2.7±0.8 prediction
steps; Table V). There was no significant difference in predict-
ability compared to the neural network approach trained on
pooled healthy data.

In addition, individual ARIMA models of different orders
(AR-order: 1 ... 15; I: 1 ... 2; MA; 1 ... 15) were fitted to
each time series of normal subjects and osteoporotic patients.
Using this procedure both groups were significantly (P < 0.05)
further predictable into the future than using the individual neu-
ral network approach. However, due to a large variability in the
degree of predictability the normal group (8.6±8.2 prediction
steps) could not be separated significantly from the osteoporotic
group (4.3±2.2 prediction steps). Comparing the best pre-
dictive ARIMA model for each time series with the results
obtained from the network trained on pooled healthy data we
could not find significant differences within the normal as well
as the osteoporotic group.

Using pooled data from the osteoporotic patients and the
"leave one out technique" for training, the healthy subjects
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Figure 5. Nonuniformity of predictability in a single healthy subject.
(a) arv (prediction error) vs. time for a 60 points (2 h) continuously
running time window in a 21-h PTH serum concentration time series
(acausally filtered) for 1-15 time steps ahead prediction (curves are
from bottom to top). (b) Prediction step where the arv reached a value
of 0.5 vs. time for a 60 points (2 h) continuously running time window.
(c) Corresponding 21-h acausally filtered PTHserum concentration time
series.

(6.1±2.9 prediction steps) were not significantly further pre-
dictable than the osteoporotic patients (4.8+3.3 prediction
steps).

The healthy subjects were significantly more predictable
than the osteoporotic patients using a variety of different forms
of predictors and using predictors trained using both pooled
data and on individual time series. Although the absolute differ-
ence in predictability varied with different prediction tech-
niques, the consistency of the higher predictability for healthy
subjects using a variety of techniques suggests that this higher
predictability is due to a difference in the dynamics of the time
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Table IV. Number of Prediction Steps (2 min) Until the Prediction
Error (arv) Reaches a Value of 0.5

Subject Prediction step

Normall 6
Normal2 3
Normal3 4
Normal4 4
NormalS 5
Normal6 2
Normal7 4
Normal8 3
Normal9 4

Osteoporotic 1 2
Osteoporotic2 2
Osteoporotic3 4
Osteoporotic4 2
OsteoporoticS 2
Osteoporotic6 2

The linear 15 input-I output neural network was trained individually
on the first two thirds of each time series.

series for healthy subjects and is not merely the effect of a
particular predictive model.

Taking only every 2nd data point for time series prediction,
groups exhibiting low and high predictability as defined above
could still be found but there was only a very small difference
in the divergence rates. If the PTH concentrations were mea-
sured at 10-min intervals, it was impossible to make this distinc-
tion at all. This implies that secretory patterns evolve on a
minute-to-minute time scale whereas their significance may
only be seen in a profile over several hours.

Discussion

Two dynamic states? A hypothesis consistent with the results
of our analysis is that PTHsecretion in healthy subjects switches
between a dynamic state of high predictability and a dynamic
state of low predictability. The state of low predictability is
characterized by a rapid divergence of the predicted and actual
time series and a linear increase of arv with the number of
prediction steps. This behavior is similar to the dynamics of the
colored noise process, suggesting that the state of low predict-
ability may be a low-order stochastic (random) state. The state
of high predictability is characterized by less divergence be-
tween the predicted and actual time series and a saturation of
the arv as the number of time steps is increased. Since a single
network could predict equally well across many healthy sub-
jects, it would appear that this deterministic component is com-
mon to all of the healthy subjects during some periods.

We found no evidence of a highly predictable saturating
component in any of the osteoporotic time series using the
approach with a neural network trained on pooled data from
healthy subjects as well as with an individual neural network
predictor derived from the patients themselves. This suggests
that osteoporotic patients have lost the ability to switch from
their dynamic state of low predictability to the dynamic state
of high predictability.

Using the best predictive ARIMA model fitted on pooled

Table V. Number of Prediction Steps (2 min) Until the Prediction
Error (arv) Reaches a Value of 0.5

Subject Prediction step

Normall 6
Normal2 4
Normal3 6
Normal4 5
NormalS 5
Normal6 4
Normal7 6
Normal8 4
Normal9 2

Osteoporotic 1 3
Osteoporotic2 2
Osteoporotic3 3
Osteoporotic4 2
OsteoporoticS 4
Osteoporotic6 2

The ARIMA model predictor was trained on pooled data from healthy
subjects.

healthy data, we could significantly separate both groups in
analogy to the neural network approach, although the predict-
ability was less than obtained with the neural network predictor.

The best predictive ARIMA model, individually fitted on
each time series, performed better than the neural network ap-
proaches where the time series were trained and tested individu-
ally. The better prediction by the individual ARIMA models
may be due to some nonstationarities in the data. However, the
ARIMAmodels did not perform better than the neural network
predictor trained on the pooled PTH data sets from healthy
subjects. In particular, the ARIMA models could not separate
the groups due to high variability in the predictive results.

The bimodal distribution of the predictability of the short
time series from the nine healthy subjects (Fig. 4 b, Table HI)
may be due to the limited measurement period for these time
series (between 4.5 and 9 h). Four of the healthy subjects
have time series dominated by the state of high predictability,
whereas the other five have time series dominated by the state
of low predictability. The identification of distinct regions with
low and high predictability in all of the longer time series from
healthy subjects supports this hypothesis. Because periods of
low predictability lasted between 2 h 24 min and 4 h 55 min
in the long time series, it would not be surprising to find that
the distributions of states of low and high predictability was
not uniform in the short time series.

Our analysis, and reexamination of the longer series, sug-
gests that PTH secretion seems to exhibit two distinct dynamic
states. A model in which PTH secretion in healthy subjects
switches between a dynamic state of high predictability and one
of low predictability on an hourly to daily temporal scale would
be biologically plausible given the temporal scale of the refrac-
tory period of the PTH receptor, its reduced affinity after hor-
mone exposure (28) and the bone remodeling process with
alternating phases of bone resorption and bone formation. Fur-
ther evidence for a nonuniformity of PTH secretion can be
seen by examining the most effective treatment protocol for
osteoporosis. Daily injections of PTH show a tremendous gain
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in bone mass in animals ( 11-13) and humans (14, 15), whereas
continuous PTH infusion results in a loss of bone mass and
structure.

The effectiveness of a daily PTH injection has been so
surprising that it took a decade of consistent findings before
becoming generally accepted. It is, however, not known whether
this bone anabolic property of PTH finds a correlate in certain
patterns of PTH secretion. Our data provide the first evidence
that states of high predictability might be a regular finding in
subjects with normal bone mass and metabolism. On the other
hand the well-known minute-to-minute regulation of serum cal-
cium could be of dominant influence.

If a high rate of change of PTHconcentration is the signifi-
cant factor in maintaining normal bone remodeling, more fre-
quent application of PTH pulses with large amplitude may be
even more effective than a daily injection. Application of large
pulses of PTH on an hourly scale might be feasable with the
use of a hormone pump. This is an important area for future
investigation.

Two different temporal scales might be involved in the regu-
lation of the bone remodeling process. One time scale, of - 2
min, contains the high-frequency fluctuations of PTH serum
concentration, which may prevent the PTH receptors from
down-regulating. The other scale is hourly to daily, where
switching between states of low and high predictability is ob-
served, which might be a "switch" between bone resorption
and bone formation in the physiological bone remodeling pro-
cess. The absence of switching to the highly predictable secre-
tory state in osteoporotic subjects may then lead to the loss of
bone mass and structure due to an imbalance of bone formation
and bone resorption.

Nonuniform dynamics in other systems. Our suggestion of
nonuniform (two state) dynamics in PTH secretion of healthy
subjects is similar to that of Gallez and Babloyantz (29), who
found evidence for switching between two different dynamic
states in EEGdata. Their study focused on variation of predict-
ability in nonuniform attractors by investigating time series of
EEGdata. Recently Pawelzik et al. (30) demonstrated switching
between predictable and unpredictable states in data from cat
visual cortex. Gallez and Babloyantz proposed that if there is
evidence for nonuniformity in the dynamics of attractors, it
would be worth characterizing the predictability of parts of the
attractor. The evidence that two regions of predictability exist
in the PTH secretion, in EEGdata, and in data from cat visual
cortex suggests that it might be useful to investigate segments of
other physiological signals such as cardiac rhythms or electrical
activity of single neurons for distinct regions of predictability
that may correspond to differing dynamic states. A similar ap-
proach has been used by Drepper (31) who calculated the pre-
dictability (using an information production profile) for a epide-
miological time series of measles cases data. He also found
nonuniformity in his attractor reconstructed from the measles
cases data.

Differences in linear and nonlinear prediction. Wefound
no significant difference in the predictive ability of linear and
nonlinear networks for the PTHconcentration time series. How-
ever, using classical nonlinear analysis, we found evidence for
nonlinear determinism and possibly low-dimensional determin-
istic chaos in the irregular pattern of PTH secretion in healthy
human subjects (32). Our results are in accordance with the
findings of Blinowska and Malinowski (21) who demonstrated
that the irregular nonlinear EEG signal could be predicted
equally well or even better by a linear autoregressive model

than by the nonlinear prediction model proposed by Sugihara
and May (19). These results differ from others who compared
linear and nonlinear predictive models, and this may be due to
the relatively small amount of data available in our study, but
a final clear conclusion is still lacking (19, 22, 24).

Although beyond the scope of this manuscript, an important
area for future work is whether there is a nonlinear explanation
of at least part of the behavior of PTH secretion. It may be
possible to address this issue through the use of surrogate data
(33). Surrogate data are simulated noisy time series that pre-
serve certain statistical and dynamic features of the original
time series from which they are generated. Weare currently
working on this type of analysis applied to the PTHtime series.

A PTH biosensor is needed. Because switching between
dynamic states of PTH secretion in healthy subjects seems to
occur on a temporal scale of many hours, only extended mea-
surements over periods of 1 d or longer could confirm our
hypothesis of the nonuniformity of the PTHsecretory dynamics.
Unfortunately, the period over which PTH concentration can
be measured frequently by blood sampling is severely limited
by the resulting total blood loss.

It might be feasible to extend the measurement period to
2 d by reducing the sampling frequency from one blood sample
every 2 min to one sample every 4 min. Longer measurement
periods at such a high sampling frequency could only be per-
formed by an on-line biosensor for PTH. Such a biosensor
is not yet available although biosensors containing biological
receptors such as the nicotinic acetylcholine receptor (34-36)
and the L-glutamate receptor (37) have been developed. There
is some hope of developing an on-line PTH-biosensor in the
future because the PTHreceptor has been cloned recently (38).

A sampling interval longer than 4 min to extend the mea-
surement period is not recommended because separation into
groups of low and high predictability is lost, as seen in our
results with subsampling of the 2-min time series. This provides
further evidence that biological information that separates the
PTH secretory dynamics of healthy from osteoporotic subjects
is encoded in the high-frequency fluctuations of the PTHserum
concentration.

Time series prediction could be used for analyzing other
dynamical diseases where methods such as computing the mean
value for a time series or the power spectrum fail to distinguish
normal from abnormal patterns. In particular, in such cases
where a nonuniformity in the dynamics of a physiological at-
tractor can be assumed, local time series prediction is a useful
tool for characterizing different dynamic states. Our results sug-
gest that the PTH secretory pattern in healthy subjects is an
example of nonuniform dynamics that exhibit at least two differ-
ent phases of secretion, one dynamic phase of high predictability
and one of low predictability.
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