Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117612

A two-step adhesion cascade for T cell/endothelial cell interactions under flow conditions.

D A Jones, L V McIntire, C W Smith, and L J Picker

Cox Laboratory for Biomedical Engineering, Department of Chemical Engineering, Rice University, Houston, Texas 77251-1892.

Find articles by Jones, D. in: PubMed | Google Scholar

Cox Laboratory for Biomedical Engineering, Department of Chemical Engineering, Rice University, Houston, Texas 77251-1892.

Find articles by McIntire, L. in: PubMed | Google Scholar

Cox Laboratory for Biomedical Engineering, Department of Chemical Engineering, Rice University, Houston, Texas 77251-1892.

Find articles by Smith, C. in: PubMed | Google Scholar

Cox Laboratory for Biomedical Engineering, Department of Chemical Engineering, Rice University, Houston, Texas 77251-1892.

Find articles by Picker, L. in: PubMed | Google Scholar

Published December 1, 1994 - More info

Published in Volume 94, Issue 6 on December 1, 1994
J Clin Invest. 1994;94(6):2443–2450. https://doi.org/10.1172/JCI117612.
© 1994 The American Society for Clinical Investigation
Published December 1, 1994 - Version history
View PDF
Abstract

Neutrophil adherence to endothelial cells (ECs) under conditions of flow occurs in successive steps, including selectin-dependent primary adhesion and CD18-dependent secondary adhesion. We used a parallel-plate flow chamber to assess the steps in T cell adherence in vitro. On monolayers of L cells transfected with the EC adhesion molecules E-selectin, vascular cell adhesion molecule-1 (VCAM-1), or intercellular adhesion molecule-1 (ICAM-1), E-selectin was capable of mediating only primary adhesion, ICAM-1 was capable of mediating only secondary adhesion, and VCAM-1 was capable of mediating both primary and secondary adhesion. Studies using human umbilical vein EC monolayers stimulated for 24 h with IL-1 also revealed distinct primary and secondary steps in T cell adhesion under flow, and the secondary adhesion was inhibited > 90% by blocking both VCAM-1/alpha 4 beta 1 integrin and ICAM-1/CD18 integrin pathways. However, the primary adhesion under conditions of flow could not be attributed to any of the mechanisms known to support adhesion of leukocytes to ECs. Alone, this pathway was shown to mediate T cell rolling and was a necessary prerequisite for engagement of the two integrin pathways in this system. Thus, T cell adherence to 24-h IL-1-stimulated human umbilical vein ECs at venular wall shear stresses involves at least two successive steps, with clear molecular distinctions from the mechanisms accounting for neutrophil/EC adhesion.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2443
page 2443
icon of scanned page 2444
page 2444
icon of scanned page 2445
page 2445
icon of scanned page 2446
page 2446
icon of scanned page 2447
page 2447
icon of scanned page 2448
page 2448
icon of scanned page 2449
page 2449
icon of scanned page 2450
page 2450
Version history
  • Version 1 (December 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts