Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117508

Protein 4.1 deficiency associated with an altered binding to the spectrin-actin complex of the red cell membrane skeleton.

F Lorenzo, N Dalla Venezia, L Morlé, F Baklouti, N Alloisio, M T Ducluzeau, L Roda, P Lefrançois, and J Delaunay

CNRS URA 1171, Institut Pasteur de Lyon, France.

Find articles by Lorenzo, F. in: PubMed | Google Scholar

CNRS URA 1171, Institut Pasteur de Lyon, France.

Find articles by Dalla Venezia, N. in: PubMed | Google Scholar

CNRS URA 1171, Institut Pasteur de Lyon, France.

Find articles by Morlé, L. in: PubMed | Google Scholar

CNRS URA 1171, Institut Pasteur de Lyon, France.

Find articles by Baklouti, F. in: PubMed | Google Scholar

CNRS URA 1171, Institut Pasteur de Lyon, France.

Find articles by Alloisio, N. in: PubMed | Google Scholar

CNRS URA 1171, Institut Pasteur de Lyon, France.

Find articles by Ducluzeau, M. in: PubMed | Google Scholar

CNRS URA 1171, Institut Pasteur de Lyon, France.

Find articles by Roda, L. in: PubMed | Google Scholar

CNRS URA 1171, Institut Pasteur de Lyon, France.

Find articles by Lefrançois, P. in: PubMed | Google Scholar

CNRS URA 1171, Institut Pasteur de Lyon, France.

Find articles by Delaunay, J. in: PubMed | Google Scholar

Published October 1, 1994 - More info

Published in Volume 94, Issue 4 on October 1, 1994
J Clin Invest. 1994;94(4):1651–1656. https://doi.org/10.1172/JCI117508.
© 1994 The American Society for Clinical Investigation
Published October 1, 1994 - Version history
View PDF
Abstract

Protein 4.1 has been defined as a major component of the subcortical skeleton of erythrocytes. It binds the spectrin--actin scaffold through a 10-kD internal domain. This binding requires an essential 21-amino acid sequence motif, Motif I, which is retained by alternative splicing at the late stage of erythroid differentiation. We here analyze the molecular basis of heterozygous 4.1(-) hereditary elliptocytosis, associated with protein 4.1 partial deficiency, in nine related French families. cDNA sequencing revealed a single codon deletion (AAA) resulting in a lysine residue deletion within the 10-kD binding domain, 3' of Motif I. The mutated allele was designated allele 4.1 Aravis. In order to assess the functional effect of the codon deletion, recombinant 10-kD constructs were made and various binding assays were performed using spectrin, purified spectrin-actin complex, or red cell membranes. These experiments demonstrated that the deletion of the Lys residue clearly prevents the binding capacity. Similar results were obtained with a construct containing the Lys residue but lacking Motif I. These data strongly suggest that the binding site to the spectrin-actin complex must contain the Lys 447 (or 448), and therefore resides not only on Motif I but extends 3' of this essential motif.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1651
page 1651
icon of scanned page 1652
page 1652
icon of scanned page 1653
page 1653
icon of scanned page 1654
page 1654
icon of scanned page 1655
page 1655
icon of scanned page 1656
page 1656
Version history
  • Version 1 (October 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts