Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117496

The trk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes.

M Yaar, M S Eller, P DiBenedetto, W R Reenstra, S Zhai, T McQuaid, M Archambault, and B A Gilchrest

Department of Dermatology, Boston University School of Medicine, Massachusetts 02118.

Find articles by Yaar, M. in: PubMed | Google Scholar

Department of Dermatology, Boston University School of Medicine, Massachusetts 02118.

Find articles by Eller, M. in: PubMed | Google Scholar

Department of Dermatology, Boston University School of Medicine, Massachusetts 02118.

Find articles by DiBenedetto, P. in: PubMed | Google Scholar

Department of Dermatology, Boston University School of Medicine, Massachusetts 02118.

Find articles by Reenstra, W. in: PubMed | Google Scholar

Department of Dermatology, Boston University School of Medicine, Massachusetts 02118.

Find articles by Zhai, S. in: PubMed | Google Scholar

Department of Dermatology, Boston University School of Medicine, Massachusetts 02118.

Find articles by McQuaid, T. in: PubMed | Google Scholar

Department of Dermatology, Boston University School of Medicine, Massachusetts 02118.

Find articles by Archambault, M. in: PubMed | Google Scholar

Department of Dermatology, Boston University School of Medicine, Massachusetts 02118.

Find articles by Gilchrest, B. in: PubMed | Google Scholar

Published October 1, 1994 - More info

Published in Volume 94, Issue 4 on October 1, 1994
J Clin Invest. 1994;94(4):1550–1562. https://doi.org/10.1172/JCI117496.
© 1994 The American Society for Clinical Investigation
Published October 1, 1994 - Version history
View PDF
Abstract

We have recently shown that (a) human melanocytes express the p75 nerve growth factor (NGF) receptor in vitro; (b) that melanocyte dendricity and migration, among other behaviors, are regulated at least in part by NGF; and (c) that cultured human epidermal keratinocytes produce NGF. We now report that melanocyte stimulation with phorbol 12-tetra decanoate 13-acetate (TPA), previously reported to induce p75 NGF receptor, also induces trk in melanocytes, and TPA effect is further potentiated by the presence of keratinocytes in culture. Moreover, trk in melanocytes becomes phosphorylated within minutes after NGF stimulation. As well, cultures of dermal fibroblasts express neurotrophin-3 (NT-3) mRNA; NT-3 mRNA levels in cultured fibroblasts are modulated by mitogenic stimulation, UV irradiation, and exposure to melanocyte-conditioned medium. Moreover, melanocytes constitutively express low levels of trk-C, and its expression is downregulated after TPA stimulation. NT-3 supplementation to cultured melanocytes maintained in Medium 199 alone prevents cell death. These combined data suggest that melanocyte behavior in human skin may be influenced by neurotrophic factors, possibly of keratinocyte and fibroblast origin, which act through high affinity receptors.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1550
page 1550
icon of scanned page 1551
page 1551
icon of scanned page 1552
page 1552
icon of scanned page 1553
page 1553
icon of scanned page 1554
page 1554
icon of scanned page 1555
page 1555
icon of scanned page 1556
page 1556
icon of scanned page 1557
page 1557
icon of scanned page 1558
page 1558
icon of scanned page 1559
page 1559
icon of scanned page 1560
page 1560
icon of scanned page 1561
page 1561
icon of scanned page 1562
page 1562
Version history
  • Version 1 (October 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts