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Introduction
Chaos, in its mathematical sense, refers to irregular behavior
that appears to be random, but is not. The recognition that an
irregular behavior is chaotic, rather than random, signifies that
a set of precise rules, rather than chance, governs the irregular
behavior of the system. Therefore, if the system is sufficiently
well understood, the irregular behavior can be predicted, elimi-
nated, or controlled. Chaos theory has been applied very suc-
cessfully to a wide variety of phenomena exhibiting irregular
behavior, ranging from astrophysics to quantum mechanics,
chemistry, biology and medicine, social sciences, and even the
stock market (1). In the biomedical field, chaos theory has
been used successfully to explain observed phenomena such as
the response of cardiac and neural tissue to pacing stimuli (2-
8), fluctuations in leukocyte counts in patients with chronic
myelogenous leukemia (4), variations in renal blood flow in
hypertensive versus normal rats (9), and the epidemiology of
measles in an urban environment ( 10). A particularly exciting
new area has been the development of a method for controlling
chaotic behavior that does not depend on a detailed under-
standing of the mechanisms producing chaos in the system
( 11). In this Perspective, we illustrate how this new technique
has been applied to a biological problem by describing our
results applying chaos control to a chaotic form of ventricular
tachycardia induced by the drug ouabain in isolated rabbit ven-
tricular muscle ( 12). Webegin with a general description of
chaos, without assuming that the reader has any mathematical
background in chaos theory.

Somegeneral background in chaos theory
As noted above, chaotic behavior, although irregular, is actu-
ally generated by an underlying deterministic, i.e., nonprobabi-
listic, process. As an illustration, consider the data set in Fig. 1,
which appears to be completely irregular and has no repeating
pattern. Statistical autocorrelation tests applied to these data
are negative. One possibility is that the fluctuations are ran-
dom; but it is also possible that an underlying deterministic
process is governing the irregular fluctuations. By determinis-
tic, we mean that the value of the system at the previous point
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(x,_- ) has determined the value of the current point (x") ac-
cording to some set of rules (i.e., mathematical equations). An
obvious way, then, to look for a deterministic relationship be-
tween one point and the next is simply to plot xs vs. x,,- for all
the data points, i.e., point 2 against point 1, point 3 against
point 2, etc. Whenthe data in Fig. 1 are plotted in this manner,
known as a Poincare plot, a very simple relationship between
xn and x,,- becomes apparent (Fig. 2). In this example, the
relationship is simply the curve described by the equation for a
parabola:

Xn = aXnI (1 -Xn-l)-
As the successive data points appear in Fig. 1, they do not fill
out the parabola in a particular sequence, but instead bounce
back and forth between different regions, producing the com-
plex irregular behavior. But despite the irregularity in the val-
ues of successive points, the relationship between one point
and the next is always very simple, though nonlinear.

The ability of this simple nonlinear equation to produce
such complex behavior, however, is critically dependent on the
value of the parameter a in eq. 1. This is illustrated in Fig. 3. If
a has a low value, such as 2, no matter what initial value xO you
begin with, the system comes to an equilibrium after several
iterations of eq. 1 and remains there (Fig. 3 A). If a has a
somewhat higher value of 3.2, then regardless of the initial
value (x0), successive values eventually oscillate between two
values in an ABABAB. . . pattern (Fig. 3 B). A mathemati-
cian calls this period-2 behavior; a cardiologist calls it bige-
miny. If a has a higher value still, 3.5, then more complex but
still periodic behavior occurs, such as the ABCDABCD. . .

period-4 (or quadrigeminal) pattern shown in Fig. 3 C. At a
critical value of a, slightly greater than 3.8, however, the system
becomes completely irregular and aperiodic, and has no re-
peating patterns whatsoever (Fig. 3 D). The value of a, there-
fore, determines whether the system behaves in a stable peri-
odic fashion, or in an irregular chaotic fashion.

The chaotic behavior produced by eq. 1 can be attributed to
a defining feature of all chaotic systems, their extreme sensitiv-
ity to initial conditions. A famous example is the "butterfly
effect," described by meteorologist Edward Lorenz ( 13 ). Using
a relatively simple set of nonlinear differential equations to
simulate atmospheric weather changes, he assigned a set of ini-
tial conditions and computed the subsequent behavior of the
system. The system evolved over time in an irregular chaotic
pattern. If he used a slightly different value for the initial condi-
tions of the same equations, by changing one part in a million,
the system initially behaved in a similar manner; however,
after time, it started to diverge and evolved a completely differ-
ent pattern. Fig. 4 illustrates this phenomenon using the data in
Fig. 1, obtained from eq. 1 with a = 4.0. Whenthe initial value
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casts falls off dramatically as the forecast period increases, and
it applies equally well to any physical or biological system that
exhibits chaotic behavior.

The appreciation that a simple equation, such as eq. 1, can
produce extremely irregular behavior has profound implica-
tions: it suggests that despite the very complex behavior that is
typical of most physical and biological phenomena, they may
yet be governed by a simple set of rules. Whereas previously
many of these phenomena seemed too hopelessly complex to

l lsolve by traditional analytic methods, chaos theory offers a
0 20 40 60 80 100 fresh approach. First, identify the underlying equations de-

n scribing a system; next, locate a critical parameter equivalent to
a in eq. 1; then, modulate the value of the critical parameter by

A sequential data set (x~) showing a very irregular (non- some intervention to eliminate chaos and restore periodic be-
havior to the system. Of course, this approach assumes that the
system is simple enough to develop an accurate mathe-

as changed from 0.2000000 (solid line) to 0.2000001 matical model, and that the model contains a critical parame-
line), the curves remained virtually superimposed for ter that can be manipulated in a practicalfashion. In reality, a
20 iterations of eq. 1, but then rapidly diverged and physical or biological system may be too complex to develop a
completely different behavior. This extreme sensitivity sufficiently accurate model, or the critical parameters deter-

Ll conditions, in which small differences diverge expo- mining its behavior may not be accessible or easily manipu-
y, is a feature that characterizes all chaotic systems. (A lated. Recently, however, a new technique has been developed
in which initial differences diverge exponentially rather that focuses on controlling, rather than eliminating, chaos
early is a nonlinear system, and for this reason, chaos ( 11 ). This method does not require a detailed knowledge of the
is also called nonlinear dynamics.) The "butterfly ef- system, but only the ability to observe the chaotic behavior in
so-named because one can imagine that even a butterfly real time and to apply brief small perturbations to the system.
g its wings could create enough of a disturbance in the The method has now been applied successfully to several physi-
onditions of a chaotic weather system to cause a com- cal and chemical systems ( 14-17). It also has been speculated
different weather pattern to evolve over time, perhaps that chaos control may be a physiologic mechanism of infor-
ing a hurricane that would not have occurred otherwise. mation processing by the brain ( 18 ). Weadapted chaos control
-orollary to this property is that the accuracy to which theory for its first biological application, the chaotic cardiac
ial conditions are defined determines how accurately arrhythmia described below.

the future behavior of a chaotic system can be predicted, even
when the exact equations governing the system are known.
Since computers can perform calculations only to a finite num-
ber of decimal places, the ability to predict future behavior of a
chaotic system is always limited from a practical standpoint.
This is an important reason why the accuracy of weather fore-

0.5

Xn-1

Figure 2. A Poincar6 plot of the data from Fig. 1, in which the current
value of x (x") is plotted against the previous value (x.- I), revealing
a simple underlying relationship.

Applying chaos theory to a cardiac arrhythmia
Whentwo or more oscillators are coupled together so that their
feedback influences each other, chaotic behavior often occurs.
In heart, intracellular Ca is closely regulated by a number of
coupled processes that cyclically augment and decrease intra-
cellular Ca, analogous to a system of coupled oscillators. Fur-
thermore, cyclical fluctuations in intracellular Ca are a cause of
afterdepolarizations and triggered activity in heart, a well-
known arrhythmogenic mechanism. We therefore reasoned
that intracellular Ca overload in heart might produce irregular
beating patterns due to chaos. To test this idea, we exposed an
intact cardiac muscle preparation, consisting of the interven-
tricular septum of a rabbit heart, isolated and arterially per-
fused through the left coronary artery (Fig. 5), to a toxic con-
centration of the cardiac glycoside ouabain (± epinephrine) to
induce intracellular Ca overload. A monophasic action poten-
tial was recorded continuously, digitized by a computer, and
analyzed on-line to calculate the interbeat intervals (I") be-
tween successive beats. As the ouabain took effect, the heart
first started beating on its own at a fast but regular rate (Fig. 6
A). Whenwe plotted the current interbeat interval (I") against
the previous interbeat interval (I"_) we obtained a single
point on the line of identity (where In = I since all the
intervals were the same (Fig. 6 B). Subsequently, the heart
began beating in a bigeminal or period-2 pattern, with a long
interval followed by a short interval in a repeating ABABAB

. . . pattern. The Poincare plot now showed two groups of
points on either side of the line of identity, corresponding to the
long interval followed by a short interval, and the short interval
followed by a long interval, respectively. Typically, the arrhyth-
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Figure 3. The behavior of eq. I with differ-
_ ent values of a. (A) a = 2.0; (B) 3.2; (C)

40 50 3.5; and (D) 4.0 (the same as in Fig. 1).
See text for details.

mia spontaneously developed higher order periods, such as

quadrigeminy (period-4), the ABCDABCD. . . pattern
shown in Fig. 6 E, with the corresponding Poincare plot illus-
trated in Fig. 6 F. In 85% of hearts, the arrhythmia eventu-

ally became completely irregular, with no repeating pattern
whatsoever (Fig. 6 G). The Poincare plot no longer showed a

discrete set of points, but instead a cloud of points (Fig. 6 H).
However, the cloud of points was not a diffuse cloud, as would
expected if the interbeat intervals during the irregular arrhyth-
mia were occurring in a random pattern. Instead, there were
areas that were much more highly populated than other areas.
This is the classic hallmark of chaos. The rough structure out-
lined by the densely populated regions is known as a strange
attractor, since the points are preferentially attracted to these
regions.

The observation that the ouabain-induced ventricular
tachycardia was chaotic is generally consistent with the idea
that intracellular Ca level is a critical parameter, analogous to
the parameter a in eq. 1, that can push the heart from periodic
into chaotic beating. However, our understanding of the de-
tailed mechanisms by which chaos developed in this setting is

1.0

X 0.5

limited by the lack of an exact mathematical model that can
account for all of the complexities of intracellular Ca regulation
in the biological preparation. Aside from avoiding ouabain tox-
icity, we have no real insight into how to prevent or eliminate
the chaotic arrhythmia by manipulating a critical parameter of

7o -TP
PC

o ok 1UJ IifI W'Vl'J U Hf 1 Figure S. Schematic diagram of the isolated arterially perfused rabbit
, interventricular septal preparation. The triangular-shaped septum is

0 20 40 60 80 100 mounted in a chamber and arterially perfused through a perfusion
n cannula (PC) at 370C in a nitrogen-filled (N2) atmosphere. Temper-

ature is continuously monitored with a probe (TP), and the prepara-
Figure 4. Illustration of extreme sensitivity to initial conditions. Eq. 1, tion is stimulated via stimulating electrodes (SE) connected to an

with a = 4.0, was iterated 100 times, starting with an initial value electronic pacemaker. A monophasic action potential catheter (MAP)
(xO) of 0.2000000 (solid line) or 0.2000001 (dashed line). The curves connected to a preamplifier is used to monitor electrical activity, and
begin to diverge markedly after 20 iterations. contraction is recorded with a tension transducer( TT) tied to the apex.
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Figure 6. Recordings of monophasic action potentials (MAPs) (A, C,
E, and G) and the respective Poincar6 plots of interbeat intervals (B,
D, F, and H) at various stages of ventricular tachycardia induced by
ouabain (± epinephrine) in typical rabbit septal preparations. See
text for details. Note that in the Poincar6 map of the final stage (H),
the points form an extended structure that is not space filling (i.e.,
not random), consistent with chaos. (Reprinted from reference 12,
with permission.)

the system. This is where the concept of controlling, as opposed
to eliminating, chaos is useful.

To understand how to control chaos, it is important to ex-
amine the Poincare plot more closely (Fig. 7 A). Note the
region where the attractor crosses the line of identity (near
coordinates 0.30, 0.30). A point on this line means that the
current interbeat interval is the same as the previous interbeat
interval, which defines an equilibrium point. The equilibrium
point is unstable, because when a point falls very close to this
equilibrium point, it quickly wanders away. However, if one
closely observes the sequence by which points approach and
depart from this unstable equilibrium point, one finds that the
approach consistently occurs along a characteristic direction
(called the stable manifold, illustrated approximately by points

Iu., ( )

Figure 7. (A) The position of the unstable equilibrium point, stable,
and unstable (linearized) manifolds for the Poincar6 plot in Fig. 6
H. The numbers refer to successive pairs of interbeat intervals, illus-
trating the characteristic approach and departure from the unstable
equilibrium point, as described in the text. The heavy arrows are lin-
ear approximations of the directions of the stable and unstable mani-
folds in the vicinity of the unstable equilibrium point. (B) Schematic
of our method of chaos control, using the features of the unstable
equilibrium point (intersection of diagonal lines) and its associated
stable and unstable manifolds. See text for details. (Reprinted from
reference 12, with permission.)

163 and 164). Similarly, departure from the unstable equilib-
rium point also consistently occurs along a different direction
(called the unstable manifold, illustrated by points 164, 165,
166, and 167, which alternately flip across the line of identity,
each time landing further away from the unstable equilibrium
point). This structure of an unstable equilibrium point with
associated stable and unstable manifolds is known mathemati-
cally as a saddle point, and the analogy is intuitive. Imagine
balancing a ball on a saddle. If placed exactly at the center of
the saddle, the ball will remain there (in unstable equilibrium)
until any small perturbation, such as a whiff of air, displaces the
ball to one side or the other. The ball will then accelerate away
from the center, but always in the transverse direction (towards
one of the stirrups) and never towards the front or the back
along the centerline of the saddle. The transverse direction is
therefore equivalent to an unstable manifold. Conversely, if the
ball is placed on the centerline towards the front or back of the
saddle, it will roll towards the center of the saddle. The center-
line of the saddle is therefore equivalent to a stable manifold.
Mathematically, all chaotic systems exhibit saddle points or,
more generally, periodic saddle cycles.

To control chaos, one takes advantage of this saddle point
structure. Continuing with the ball and saddle analogy, if one
wishes to keep the ball in the center of the saddle (i.e., near the
unstable equilibrium point), one could either move the saddle
to compensate every time the ball shifted off-center, or give the
ball a nudge to move it back towards the centerline of the
saddle. With either perturbation, it is not necessary to keep the
ball near the center of saddle, but only near the centerline of the
saddle, since the ball will always roll closer to the center of the
saddle from any position on the centerline (i.e., the stable man-
ifold).

Fig. 7 B illustrates schematically how we used this method
to control the chaotic ouabain-induced arrhythmia in the rab-
bit heart. The computer program computed on-line each inter-
beat interval from the monophasic action potential recordings.
By keeping track of the sequence of points as they were plotted
on a Poincare plot, the program estimated the location of an
unstable equilibrium point. By watching how successive points
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moved towards and away from this point, the program then
estimated positions of the stable and unstable manifolds by a
linear regression method. After this learning phase was com-
pleted, the computer waited for a pair of interbeat intervals to
fall near the unstable equilibrium point, such as the point a in
Fig. 7 B. The point a represents a long interbeat interval (the
coordinate on the I.-, axis) followed by a shorter interbeat
interval (the coordinate on the I,, axis). By construction of the
Poincare plot, the short interbeat interval becomes the I,,- axis
coordinate for the next point (if), so ,3 must fall somewhere on
the line defined by the vertical arrow in Fig. 7 B. Since a was
located very close to the unstable manifold, (3 will tend to be
propelled further away from the unstable equilibrium point
near the intersection of the vertical arrow and the unstable
manifold. That is, the saddle property of the unstable equilib-
rium point predicts that the point # will consist of a short inter-
beat interval followed by a long interbeat interval. Wedesigned
the computer program to introduce an electrically stimulated
premature beat (delivered by an electronic pacemaker) to
shorten the predicted long interbeat interval, so that the posi-
tion of the next point after a was deflected to the position (3'
instead of f3. The point 3' was chosen since it falls near the
stable manifold instead of the unstable manifold. Thus, the
natural dynamics of the system will cause the next point y to
fall even closer to the unstable equilibrium point. As long as the
subsequent points remain near the stable manifold, they con-
tinue to approach closer to the unstable equilibrium point.
Every time a point falls near the unstable manifold, another
paced beat is introduced to reposition the subsequent point
back close to the stable manifold. In principle, all of the points
on the Poincare plot could be confined within a small region of
the unstable equilibrium point using this pacing algorithm.
That is, all of the interbeat intervals would be nearly identical
and the heart rhythm would be regularized.

The results of applying this pacing algorithm based on
chaos control theory to the rabbit ventricular preparation are
shown in Fig. 8. As illustrated by the three examples, when the
chaos control pacing algorithm was activated during the aperi-
odic phase of the ouabain-induced ventricular tachycardia, the
irregular chaotic beating pattern was controlled and replaced
by periodic beating, typically with a period-3 or -4 pattern.
When chaos control pacing was terminated, the arrhythmia
reverted to its irregular pattern. During chaos control, only
every third or fourth beat was an electrically paced beat, indi-
cating that we were not simply overdrive-pacing the heart. Fur-
thermore, periodic or random pacing of the preparation at a
similar average rate, as during chaos control pacing, did not
eliminate the irregularity of the arrhythmia, and generally
seemed to make the irregularity more marked (Fig. 8 C). Over-
all, we were successful in converting aperiodic beating to peri-
odic beating in 8 of 11 preparations using this chaos control
pacing algorithm.

Implications for cardiac arrhythmias.
These observations support previous studies demonstrating
that the heart is capable of chaotic behavior (2-6). More gener-
ally, they demonstrate that chaos control techniques are adapt-
able to the biological setting. It is still controversial whether
chaos plays a role in clinically important cardiac arrhythmias.
It is likely that the irregular conduction patterns sometimes
seen during second degree atrioventricular block and modu-
lated parasystole are examples of chaos (6). Of the tachyar-
rhythmias, the most likely candidates for chaos are the irregu-

Figure 8. Chaos control of the
X0Ao ^ I: .::. - . . ouabain-induced ventricular

tachycardia in the isolated rab-
bit heart. Interbeat interval In

0.2 ~is plotted vs. the beat number
n during the chaotic phase of
the arrhythmia. The chaos

25!l 300 350 400 450 500 550 NOO control pacing algorithm was

applied during the period indi-
0.6 , cated, and successfully con-Cl;'c ' verted the aperiodic arrhyth-ONg . mia to a period-3 pattern (AB-
0.6 . CABC.. . ) in A, to a period-4

pattern (ABCDABCD.. . ) in
w. > . . : ~~~B. and to a period-2 pattern-,o.^*;.. (ABAB.. . ) in CA-C are

___ - ais.,.,fromdifferent hearts. In C, pe-

0.2 *it 'riodic pacing delivered at the
same average rate failed to sta-

cPon . bilize the arrhythmia. See text
. PREAC for details. (Reprinted from

200 300 400 500. ..260-sea
n
400 500

reference 12, with permission.)

lar arrhythmias such as multifocal atrial tachycardia, polymor-
phic ventricular tachycardia, Torsade de pointes, and atrial
and ventricular fibrillation. From a clinical standpoint, atrial
and ventricular fibrillation remain the most commonand vex-
ing of these arrhythmias. Evidence both for and against the
presence of low-dimensional chaos during fibrillation has been
reported ( 19-24). Weare currently investigating whether hu-
man atrial fibrillation shows hallmarks of chaos in patients
undergoing cardiac electrophysiology studies. Our analysis is
still preliminary, but results such as those illustrated in Fig. 9
are encouraging. Not only does the Poincare plot of human
atrial fibrillation show evidence of nonrandom structure, but
features such as saddle points (unstable equilibrium points
with associated unstable and stable manifolds) are detectable.
If further studies indicate that fibrillation is chaos, and that
structures such as saddle points needed to implement chaos
control are consistently present, then this raises an interesting
issue. Can a pacing algorithm based on chaos control theory,
perhaps implemented by a "smart pacemaker," be developed
as a new therapeutic strategy? Although intriguing, whether
this possibility can be realized will depend on surmounting a
number of critical obstacles, such as dealing with the spatio-
temporal complexity of fibrillation and determining how to
terminate the arrhythmia once chaos is controlled.
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