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Molecular Cloning, Chromosomal Localization, and Functional
Characterization of a Human Liver Na* /Bile Acid Cotransporter

Bruno Hagenbuch and Peter J. Meier

Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, CH-8091 Ziirich, Switzerland

Abstract

We have used a cDNA probe from a cloned rat liver Na* / tauro-
cholate cotransporting polypeptide (Ntcp) to screen a human
liver cDNA library. A 1,599-bp cDNA clone that encodes a
human Na* /taurocholate cotransporting polypeptide (NTCP)
was isolated. The human NTCP consists of 349 amino acids
(calculated molecular mass of 38 kD) and exhibits 77% amino
acid homology with the rat Ntcp. In vitro translation experi-
ments indicate that the protein is glycosylated and has a molecu-
lar weight similar to the rat Ntcp. Injection of in vitro tran-
scribed cRNA into Xenopus laevis oocytes resulted in the ex-
pression of Na*-dependent taurocholate uptake. Saturation
kinetics indicated that the human NTCP has a higher affinity
for taurocholate (apparent K, = 6 M) than the previously
cloned rat protein (apparent K, = 25 uM). NTCP-mediated
taurocholate uptake into oocytes was inhibited by all major bile
acid derivatives (100 xM), bumetanide (500 M), and bromo-
sulphophthalein (100 xM). Southern blot analysis of genomic
DNA from a panel of human/hamster somatic cell hybrids
mapped the human NTCP gene to chromosome 14. (J. Clin.
Invest. 1994. 93:1326-1331.) Key words: bile salts « hepato-
cytes « organic anion transport ¢ sinusoidal + taurocholate

Introduction

Bile formation is an important function of hepatocytes and
involves transport of bile acids and other organic anions from
portal blood into bile. Conjugated bile acids such as taurocho-
late or glycocholate enter hepatocytes predominantly via a so-
dium-dependent cotransport system. Phenomenologicaly, this
secondary active bile acid uptake system has been well charac-
terized in a variety of experimental systems including the per-
fused rat liver, isolated rat hepatocytes, isolated rat, and human
sinusoidal membrane vesicles and Xenopus laevis oocytes (1-
5). Using functional expression cloning in Xenopus laevis oo-
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cytes, a rat liver Na™*-taurocholate cotransporting polypeptide
(Ntcp)! has been cloned (6). In this study, we have used an
Ntcp-derived cDNA probe to screen a human liver cDNA li-
brary. We report the isolation and functional characterization
of the human hepatocellular Na*-dependent taurocholate co-
transporter and its chromosomal localization.

Methods

Cloning of a human Na* /bile acid cotransporter cDNA. Total human
liver RNA was prepared from pieces of frozen liver (obtained from
kidney donors and kindly provided by U. A. Meyer, Biozentrum Basel,
Switzerland) using a single-step acid guanidinium thiocyanate-phenol-
chloroform extraction method (7). mRNA was isolated using
oligo(dT)-cellulose chromatography (8). A cDNA library was con-
structed from total poly(A)* RNA (Superscript kit; Life Technologies,
Inc., Gaithersburg, MD). The cDNA was unidirectionally ligated into
Notl/Sall cut pSPORT]1, and recombinant plasmids were introduced
into Escherichia coli WM 1100 by electroporation (Gene Pulser; Bio-
Rad Laboratories, Hercules, CA). Replica filters containing 2 X 10°
recombinants of the cDNA library were screened using an EcoRI frag-
ment (nucleotides 261-1,187 of the rat Ntcp cDNA) (6) that was la-
beled with 3,000 Ci/mmol [a-3?P]dCTP (Amersham International,
Buckinghamshire, United Kingdom) using the Random Primed DNA
Labeling Kit (Boehringer Mannheim GmbH, Mannheim, Germany).
After 2 h of prehybridization at 42°C in 50% formamide, 0.75 M
NaCl/0.075 M sodium citrate at pH 7.0 (5X SSC), 5X Denhardt’s
solution, 0.5% SDS, and 200 ug/ml of denatured salmon sperm DNA,
the filters were hybridized for 16 h at 42°C in the same solution con-
taining, in addition, the labeled probe (2 X 106 cpm/ml). After hybrid-
ization, the filters were washed twice for 15 min at room temperature in
2X SSC, 0.1% SDS, followed by one wash for 1 h at 42°C in 1X SSC,
0.1% SDS, and one final wash for 15 min at 50°C in 0.1X SSC, 0.1%
SDS. Washed filters were exposed to x-ray film at —70°C overnight.
After two rounds of screening, single positive colonies, which were
functionally tested using Xenopus laevis oocytes, were obtained. 5 ng of
in vitro-transcribed cCRNA were injected into Xenopus laevis oocytes
and Na*-dependent taurocholate uptake was measured as described
(5). Sequence analysis was performed using double-stranded cDNA as
template and the T7 Sequencing kit (Pharmacia Biotech Inc., Piscata-
way, NJ). Human liver Na*/taurocholate cotransporting polypeptide
(NTCP) cDNA was sequenced in both directions using either unidirec-
tionally deleted clones ( Erase-a-base; Promega Corp., Madison, WI) or
especially synthesized oligonucleotide primers. Nucleotide and amino
acid sequence analyses were performed with the DNA and protein
sequence analysis program DNASIS/PROSIS (Pharmacia Biotech
Inc., Piscataway, NJ). Putative membrane spanning domains were de-

1. Abbreviations used in this paper: BSP, bromosulfophthalein; Ntcp,
rat liver Na* /taurocholate cotransporting polypeptide; NTCP, human
liver Na*/taurocholate cotransporting polypeptide.



termined according to Klein et al. (9). The GCG software package
(Genetics Computer Group, Inc., Madison, WI) (10) was used to per-
form sequence comparison and multiple alignments.

Transport assays in oocytes. Oocytes were maintained in culture
and uptake of 2.1 Ci/mmol [G-3H Jtaurocholic acid (Du Pont-New
England Nuclear, Boston, MA ) was determined as described (5).

Chromosomal localization of NTCP. Southern blots containing ge-
nomic DNA samples from 26 individual somatic cell hybrids digested
with Pstl were obtained from BIOS Corp. (New Haven, CT). After 1.5

GTC AGC CGG AGA ACA AGG AGT GGT CTT CCA CTG

h of prehybridization at 42°C in 50% formamide, 5X SSC, 5X Den-
hardt’s solution, 0.5% SDS, and 200 ug/ml of denatured salmon sperm
DNA the filters were hybridized for 16 h at 42°C in the same solution
containing, in addition, 2 X 10 cpm/ml of labeled probe (a PIMI/
EcoRI fragment corresponding to nucleotides —8 to 987 encompassing
most of the coding region of NTCP). After hybridization, the filters
were washed twice for 5 min at room temperature in 2X SSC, 0.1%
SDS, followed by one wash for 15 min at 63°Cin 0.1X SSC, 0.1% SDS.
Filters were exposed to x-ray film at —70°C.
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Figure 1. Nucleotide and deduced amino acid sequences of NTCP cDNA. Amino acid residues that differ between the human and the rat protein
are shown above the amino acid sequence. ( The sequence reported in this paper has been submitted to the GenBank Data Bank with the acces-

sion number L21893.)
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Results and Discussion

Nucleotide and amino acid sequences of NTCP. To clone the
NTCP, we screened ~ 200,000 colonies of a cDNA library
prepared from human liver poly(A)* RNA using as a probe a
32p_labeled EcoRI fragment complementary to the major part
of the coding region of the rat Ntcp cDNA (6). After two
rounds of screening, five single clones were identified. cDNA
sequence analysis revealed that four of them were identical.
mRNA was synthesized in vitro from these four clones and
injected into Xenopus laevis oocytes. Indeed, all four cRNAs
led to the expression of Na*-dependent taurocholate uptake.
One of these functionally active clones was sequenced and the
c¢DNA and deduced amino acid sequences are shown in Fig. 1.
The total cDNA insert of the human NTCP consists of 1,599
nucleotides. Starting with the initiation site at nucleotide 83, an
open reading frame extends over the next 1,047 nucleotides
coding for a protein of 349 amino acids with a calculated molec-
ular mass of ~ 38 kD. Although the presence of a polyadenyla-
tion signal ~ 40 bases upstream of the poly(A) tail together
with hybridization of the ¢cDNA to a 1.6-kb human liver
mRNA on a Northern blot (data not shown ) indicate the isola-
tion of a full-length clone, additional primer extension experi-
ments shall reveal the location of the cap site and thus establish
the real length of the 5’ untranslated sequence. The amino acid
sequence of the human and the rat Na*/bile acid cotrans-
porters is compared in Figs. 1 and 2. There is 88% similarity
between the human and the rat amino acid sequences, 77% of
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the residues being identical and another 11% being conserva-
tive replacements. Whether the clustering of nonconservative
amino acid replacements at the COOH-terminal end of the
protein has any functional significance is not yet known. At the
DNA level, the lowest identities were found within the 5'-non-
coding region (70%) and the highest identities within the cod-
ing and the 3"-noncoding regions (83%). The overall identity of
only 78% with the rat cDNA explains the weak signal previ-
ously obtained on Northern blots (6, 11). Based on hydropho-
bicity analysis (9) and in analogy to the rat Ntcp, we propose
the secondary structure model with seven transmembrane do-
mains as depicted in Fig. 2. In vitro translation experiments
performed as described (6 ) resulted in the synthesis of an ungly-
cosylated 34-kD polypeptide on SDS-PAGE in the absence of a
glycosylated 40-kD polypeptide in the presence of dog pancre-
atic microsomes (data not shown). The 6-kD difference is com-
patible with two sites being glycosylated. Experiments using
site-directed mutagenesis to determine the natural glycosyla-
tion sites of the rat Ntcp revealed that Asn5 and Asnl1 of the
rat protein are glycosylated (Hagenbuch, B., and P. J. Meier,
manuscript in preparation). In addition, immunostaining of
primary rat hepatocytes with a polyclonal antibody against the
COOH-terminal end of the rat Ntcp was only achieved in the
presence of detergents, suggesting an intracellular localization
of the COOH-terminal domain (unpublished observation).
These data support the predicted model shown in Fig. 2, but
additional experiments are required to definitively determine
the exact location of all cytoplasmic loops and of the number
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Figure 2. Proposed secondary structure model of the human NTCP. The protein is depicted with seven transmembrane segments (see text) of 21
residues each. Glycosylation at AsnS and Asn| 1 is indicated. Closed circles, nonconservative amino acid replacements between the human and

the rat transporters.
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and location of the transmembrane domains. The differences
in the amino acid sequence between the human and the rat
Na™*/bile acid cotransporting polypeptides together with their
different affinities for taurocholate (see below) might be a good
starting point for mutational analysis to define functionally
important amino acids (Fig. 2, closed circles).

Functional characterization of NTCP. As demonstrated in
Fig. 3, injection of 5 ng of NTCP-cRNA resulted in Na*-de-
pendent taurocholate uptake that was ~ 20-fold above the
background of noninjected oocytes. Interestingly, injection of
the same amount of rat Ntcp-cRNA resulted in ~ 10-fold
higher expression of Na*-dependent taurocholate uptake, sug-
gesting that the human transporter might exhibit a much lower
bile acid transport capacity as compared to the rat system. Al-
ternatively, the expression of the human NTCP-cCRNA may be
less efficient in oocytes as compared to the rat Ntcp-cRNA, as it
was also the case for the human and rabbit intestinal Na*-de-
pendent glucose cotransporters (12, 13) and the human and
canine cardiac Na*/Ca?* exchangers (14, 15).

To further characterize the human NTCP, we next investi-
gated its transport kinetics and its substrate specificity. As dem-
onstrated in Fig. 4, the cloned human Na*/bile acid cotrans-
port system showed clear saturability with an apparent K, for
taurocholate of 6.3+2.4 uM. This value is significantly lower
than the previously reported 25 uM for the rat transporter (6).
This higher affinity of the human NTCP would allow more
efficient extraction of bile acids at low plasma concentrations
and might help to keep the human systemic bile acid concen-
trations at the known physiological low levels (16).

To compare the substrate inhibition pattern of NTCP with
the rat Ntcp, as well as with reported studies performed with
human basolateral membrane vesicles (3), we measured Na*-
dependent taurocholate uptake into oocytes in the presence of
the major bile acid derivatives and some other organic anions.
Table I summarizes these inhibition studies and demonstrates

25 T

10 b .

pmol taurocholate/oocyte X 2h

- N

not injected  NTCP Ntcp

Figure 3. Functional expression of NTCP cRNA in oocytes. Xenopus
laevis oocytes were either not injected or were injected with 5 ng of

in vitro synthesized human (N7TCP) or rat (Ntcp) cRNA. Oocytes
were cultured for 2 d and 2-h taurocholate (17 uM) uptake values
were determined in the presence of either 100 mM NaCl (hatched
bars) or choline chloride (open bars) as described (5). Values repre-
sent mean+SE of 12-15 determinations in one of four oocyte prepa-
rations.

4. K, =62%24pM

taurocholate uptake
(pmoles/oocyte x hour)

[taurocholate] pM

Figure 4. Kinetics of taurocholate uptake by NTCP cRNA-injected
oocytes. Xenopus laevis oocytes were injected with 5 ng of cRNA.
After 2 d in culture, 1-h uptake of taurocholate (2.5-150 uM) was
determined. Values represent means of 12-15 determination from
two out of three experiments performed with different batches of oo-
cytes. Na*-dependent taurocholate transport was calculated as the
difference between the uptake in the presence of 100 mM NaCl
(closed circles) and uptake in the presence of 100 mM choline chlo-
ride (open circles). The curves were fitted by nonlinear regression
analysis assuming Michaelis-Menten kinetics.

that similar to previous observations for the rat Ntcp (6) and
experiments in intact hepatocytes ( 17) the synthetic keto-bile
acid taurodehydrocholate had no inhibitory effects. All major
physiological bile acids on the other hand inhibited the cloned
human NTCP by 40-90%. Unconjugated bile acids exhibited a
less pronounced inhibition as compared to the taurine or gly-
cine conjugates with the exception of chenodeoxycholate

Table 1. Effect of Various Organic Anions on Na*-dependent
Taurocholate Uptake into NTCP-cRNA-Injected Oocytes

Taurocholate uptake Percent of
Inhibitor (mean=SE) control
pmoljoocyte per h

None 1.175+0.114 10010
Taurodehydrocholate 1.066+0.080 9117
Cholate 0.675+0.089 57+8
Taurocholate 0.351+0.036 30+3
Glycocholate 0.522+0.046 44+4
Chenodeoxycholate 0.156+0.022 13+2
Taurochenodeoxycholate 0.223+0.035 1942
Glycochenodeoxycholate 0.161+0.020 1442
Ursodeoxycholate 0.531%0.067 45+6
Tauroursodeoxycholate 0.090+0.010 8+1
Lithocholate 0.737%0.090 63+8
Taurolithocholate 0.389+0.073 33+6
Glycolithocholate 0.279+0.051 24+4
Taurodeoxycholate 0.116+0.009 101
Probenecid (1 mM) 1.194+0.152 101+13
Bumetanide (0.5 mM) 0.831+0.087 71+7
BSP (0.1 mM) 0.483+0.052 41+4

Oocytes were injected with 5 ng of NTCP-cRNA and then cultured
for 3 d. 1-h uptake of 10 uM taurocholate was measured in the
presence of 100 uM bile acids or the indicated concentrations of other
organic anions.

Cloning of a Human Liver Na* /Bile Acid Cotransporter ~ 1329
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which was as potent an inhibitor as its taurine and glycine
conjugates. Probenecid and bumetanide did not or only
slightly inhibited NTCP mediated Na*-dependent taurocho-
late uptake, while bromosulfophthalein (BSP) exerted a
stronger inhibitory effect. This cis-inhibition pattern of NTCP
is similar to the one previously observed with rat Ntcp (6),
which is also inhibited by BSP, but does not transport this
nonbile acid organic anion ( 18). Whether or not the inhibitory
conjugated bile acids are in fact transported by NTCP is
currently under further investigation.

Chromosomal localization of NTCP. To determine the
chromosomal location of the human NTCP gene, we used
Southern blot analysis of a DNA panel of human-hamster so-
matic cell hybrids. Pstl-digested DNA samples of 26 human-
hamster cell hybrids were analyzed by hybridization with a
PfIMI/EcoRI fragment of the cloned human NTCP. The re-
sults of this hybridization analysis are summarized in Table II.
Correlation of the presence of a human specific hybridization
signal with the human chromosome content of the hybrid cell
lines showed that the NTCP gene is located on chromosome
14. The single discordance with hybrid 937 could be explained
by a possible small deletion of chromosome 14 in this hybrid,
which is not detected in karyotype analysis.

In conclusion, we have cloned a human Na*/bile acid co-
transporter that has a significantly higher affinity for taurocho-
late than the rat Ntcp. The protein showed a 77% amino acid
homology to rat Ntcp and the gene could be localized to chro-
mosome 14. These studies provide the basis for future investi-
gation and characterization of the human NTCP gene in
various physiological and pathophysiological situations.
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