Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Distinct patterns of expression of fibroblast growth factors and their receptors in human atheroma and nonatherosclerotic arteries. Association of acidic FGF with plaque microvessels and macrophages.
E Brogi, … , G F Alberts, P Libby
E Brogi, … , G F Alberts, P Libby
Published November 1, 1993
Citation Information: J Clin Invest. 1993;92(5):2408-2418. https://doi.org/10.1172/JCI116847.
View: Text | PDF
Research Article

Distinct patterns of expression of fibroblast growth factors and their receptors in human atheroma and nonatherosclerotic arteries. Association of acidic FGF with plaque microvessels and macrophages.

  • Text
  • PDF
Abstract

Because fibroblast growth factors (FGFs) modulate important functions of endothelial cells (EC) and smooth muscle cells (SMC), we studied FGF expression in human vascular cells and control or atherosclerotic arteries. All cells and arteries contained acidic (a) FGF and basic (b) FGF mRNA. Northern analysis detected aFGF mRNA only in one of five control arteries but in all five atheroma tested, while levels of bFGF mRNA did not differ among control (n = 3) vs. plaque specimens (n = 6). Immunolocalization revealed abundant bFGF protein in control vessels (n = 10), but little in plaques (n = 14). In contrast, atheroma (n = 14), but not control arteries (n = 10), consistently exhibited immunoreactive aFGF, notably in neovascularized and macrophage-rich regions of plaque. Because macrophages colocalized with aFGF, we tested human monocytoid THP-1 cells and demonstrated accumulation of aFGF mRNA during PMA-induced differentiation. We also examined the expression of mRNA encoding FGF receptors (FGFRs). All cells and arteries contained FGFR-1 mRNA. Only SMC and control vessels had FGFR-2 mRNA, while EC and some arteries contained FGFR-4 mRNA. The relative lack of bFGF in plaques vs. normal arteries suggests that this growth factor may not contribute to cell proliferation in advanced atherosclerosis. However, aFGF produced by plaque macrophages may stimulate the growth of microvessels during human atherogenesis.

Authors

E Brogi, J A Winkles, R Underwood, S K Clinton, G F Alberts, P Libby

×

Full Text PDF | Download (4.70 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts