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Human Organ-specific Autoimmune Disease

Molecular Cloning and Expression of an Autoantibody Gene Repertoire for a Major Autoantigen Reveals
an Antigenic Inmunodominant Region and Restricted Inmunoglobulin Gene Usage in the Target Organ
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Abstract

The most common organ-specific autoimmune disease in hu-
mans involves the thyroid. Autoantibodies against thyroid per-
oxidase (TPQO) are present in the sera of virtually all patients
with active disease. We report the molecular cloning of the
genes for 30 high-affinity, IgG-class human autoantibodies to
TPO from thyroid-infiltrating B cells. Analysis of the putative
germline genes used for the TPO human autoantibodies sug-
gests the use of only five different H and L chain combinations
involving four H chains and three L chains. In addition, the
same combination of H and L chains was found in multiple
patients. The F(ab) proteins expressed by these genes define
two major, closely associated domains (A and B) in an immuno-
dominant region on TPO. These A and B domains contain the
binding sites of ~ 80% of IgG-class TPO autoantibodies in the
sera of patients with autoimmune thyroid disease. The present
information permits analysis, not previously possible, of the
relationship between autoantibody H and L chain genes and the
antigenic domains on an autoantigen. Our data, obtained using
target organ-derived autoantibodies, indicate that there is re-
striction in H and L chain usage in relation to the interaction
with specific antigenic domains in human, organ-specific au-
toimmune disease. (J. Clin. Invest. 1993. 92:62-74.) Key
words: autoantibody ¢ autoantigen + autoimmunity ¢ immuno-
globulin gene « thyroid peroxidase

Introduction

The most common organ-specific autoimmune disease in hu-
mans involves the thyroid. Hashimoto’s thyroiditis and
Graves’ disease, in their pure forms, represent two ends of a
clinical spectrum ranging from glandular hypofunction to hy-
perfunction. In both diseases there is a breakdown in tolerance
to a number of thyroid-specific autoantigens and the genera-
tion of an IgG antibody response. Thyrotropin receptor autoan-
tibodies occur predominantly in Graves’ disease and are re-
sponsible for hyperthyroidism (reviewed in reference 1). Auto-
antibodies to thyroglobulin, of uncertain pathogenetic
importance, tend to be found in patients with Hashimoto’s
thyroiditis rather than Graves’ disease. However, autoantibod-
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ies against thyroid peroxidase (TPO), ! the cell surface enzyme
responsible for thyroid hormone synthesis and previously
known as the thyroid “microsomal” antigen, are present in
virtually all patients with active autoimmune thyroid disease
(2, 3).

TPO autoantibodies are of high affinity and predominantly
IgG1 and IgG4 (4). There is evidence that these IgG1 (but not
IgG4) autoantibodies may play a role in thyroid cell destruc-
tion (reviewed in reference 5). TPO autoantibodies correlate
well with thyroid inflammation in autopsy studies of subjects
without clinical thyroid disease (6). With newer, sensitive as-
says, TPO autoantibodies (of unknown affinity ) are detectable,
usually at low levels, in up to 25% of the adult female popula-
tion (7). The present concept is that autoimmune thyroid dis-
ease is predominantly subclinical because of sufficient thyroid
reserve and regeneration under the influence of thyrotropin.

Information on the genes coding for organ-specific autoanti-
bodies, as well as knowledge of their epitopes, would be invalu-
able in understanding the pathogenesis of antibody-mediated
autoimmune diseases. Among the major organ-specific human
autoimmune diseases (thyroiditis, diabetes mellitus type I,
pemphigus vulgaris, myasthenia gravis, primary biliary cirrho-
sis, pernicious anemia, and Addison’s disease), few IgG class
monoclonal autoantibodies have been produced and even
fewer cloned at the molecular level (8-12). In no disease have
both the autoantibody repertoire and the autoantigenic do-
mains been defined. '

We now report the molecular cloning of the genes for 30
new organ-specific (TPO) human autoantibodies. These genes
all code for high-affinity IgG autoantibodies. We demonstrate
that these TPO autoantibodies, which appear to utilize a re-
stricted number of H and L chain genes, encompass a restricted
immunodominant region on TPO recognized by patients with
autoimmune thyroid disease.

Methods

Molecular cloning of TPO-binding F(ab) fragments. In order to obtain
TPO-binding F(ab)s we used thyroid tissue from patients with autoim-
mune thyroid disease because it is enriched, compared with blood,
lymph node, and thymus, in B cells secreting TPO autoantibodies (re-
viewed in reference 13). In addition, previous studies have demon-
strated the difficulty of obtaining thyroid-specific monoclonal autoanti-
bodies, particularly TPO autoantibodies, by using blood versus thyroid
lymphocytes (14).

We constructed five new human F(ab) combinatorial cDNA li-
braries from the thyroid tissue of three patients (WR, TR, and JA) with
Graves’ disease in the vector Immunozap (Stratacyte, La Jolla, CA) as
described previously (10), with the following modifications. We pre-
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ing region; FR, framework region; TPO, thyroid peroxidase.



Table I. Oligonucleotide Primers Used to Amplify the H and L (x) Chain Genes

Primer Sequence Source Family/C region
VH region primers
la 5'-CAG GTG CAG CTC GAG CAG TCT GGG-3' (16) VHI; plus others
3a G-- === se- sem e G- -e- - (16) VH3; plus others
(C-- ------ --GC-- --- --- --) VH1/5BACK (17) VHI; VH5
(G-- --- --- --GC-- G-- --- GG) VH3BACK (17) VH3
VH2 5'-CAG GTC AAC CTC GAG GAG TCT GG-3' based on (17) VH2
(<= === === --GC-- --- --- -4) VH2BACK (17) VH2
VH6 '-CAG GTA CAG CTC GAG CAG TCA GG-3' based on (17) VH6
(- === === --GC-- --- --- -4) VH6BACK (17) VH6
If '-CAG GTG CAG CTG CTC GAG TCT GGG-3' (16) VHI; VH4
3f G-- --- cemsemiem eem -G --- (16) VH3; plus others
(-=- === === === -A- --- --G --) VH4BACK (17) VH4
VHc "-AG GTG CAA CTG CTC GAG TCT GG-3' Immunozap unspecified
VHd B e DI P PR I Immunozap unspecified
H chain constant region
primers
CH1 5'-AGC ATC ACT AGT ACA AGA TTT GGG CTC-3' Immunozap IgG hinge region
Crd "-GCA TGA ACT AGT TGG GGG ACC ATA TTT GGA-3' (18) IgG4 hinge region
Vk primer
V(L)k '-GT GCC AGA TGT GAG CTC GTG ATG ACC CAG TCT CCA (45) Family crosspriming
(--CA-- -A-C-C--- --- --- ---) VKla (16)
(--AA-T-A-C-C--G------ --- ) VK3a (16)
x constant region primer
C(L)k '-T CCT TCT AGA CTA ACA CTC TCC CCT GTT GAA GCT
CTT TGT GAC GGG CGA ACT C-3 Immunozap

Included in parentheses (for comparison) are primers used in other studies. VH families for which the primers were designed are indicated.
Dashes indicate identity. Nucleotide restriction sites are underlined; Xhol, Spel, Sacl, and Xbal for VH, CH, V(L)k, and C(L)k regions, respectively.

pared cDNA by reverse transcription ( First Strand Synthesis kit; Stra-
tacyte) of mRNA obtained either by the technique of Han et al. (15) or
using the QuickPrep mRNA purification kit (Pharmacia, Inc., Piscata-
way NJ). In an attempt to cover as wide a range of heavy chain variable
region ( VH) genes as possible, we used upstream primers described by
Persson et al. (16), primers of Marks et al. (17) modified by introduc-
ing restriction sites, as well as the VHc and VHd region primers of
Stratacyte (Table I). Two heavy (H) chain libraries were constructed
from each of the WR and JA ¢cDNA, one using the “CH1” constant
region primer of Stratacyte and the other using an IgG4 constant region
primer (Cr4) based on nucleotide sequence data in the IgG4 hinge
region (18) (Table I). PCR conditions were as follows: 25 cycles at
94°C for 1 min, 54°C for 1 min, 72°C for 1 min; and 15 cycles at 94°C
for 1 min, 54°C for 1 min, and 72°C for 2 min. These diverse primers
all produced VH products of the correct size (Fig. 1). Because TPO
autoantibodies are predominantly of « L chain type (4), we used the
Immunozap V(L)x and C(L)« primers (Table I).

The unamplified combinatorial libraries (0.8-2.0 X 10° recombi-
nants) were screened in XL1-Blue cells by conventional techniques
(19) using as antigen the secreted, recombinant human TPO (20) la-
beled with '¥I to a specific activity of 10-20 uCi/ug protein by the
iodogen method (21). TPO-binding plaques were cloned to homogene-
ity and plasmids were excised from the Immunozap bacteriophage us-
ing the helper phage R408, according to the Stratacyte protocol. Nu-
cleotide sequencing of the cDNA inserts was performed by the dideoxy-
nucleotide chain termination method (22).

Preparation of soluble F(ab) fragments. F(ab)s were expressed as
soluble proteins in XL1-Blue cells, as previously described (11). In
brief, protein synthesis was induced with | mM isopropyl-thio-galacto-
pyranoside (Sigma Chemical Co., St. Louis, MO) for 2 h at 37°C. The
cells were then pelleted, resuspended in 0.02 times the original volume

of 10 mM Tris, pH 8.0, containing 2 ug/ml aprotinin, 1 ug/ml leupep-
tin, 1 ug/ml pepstatin, 0.1 mM phenylmethylsulfonyl fluoride (all
from Sigma Chemical Co.). After one freeze-thaw, the suspension was
sonicated, membranes pelleted by centrifugation at 4,000 g and the
F(ab)s were affinity-purified from the supernatant using a Protein G
sepharose column (Pharmacia, Inc.).

Direct F(ab) binding of ' I-TPO. As previously described (11),
F(ab)s diluted in assay buffer (0.1 M NaCl, 10 mM Tris-HCI, pH 7.5,
0.1% Tween 20, and 0.5% BSA) were incubated with '*I-TPO
(15,000-20,000 cpm) and mouse monoclonal antibody to human «
light chains (QE1 1, Recognition Sciences, Birmingham, UK) in a total

123456

— 1.0 kb
= — 0.5 kb

0.7 kb —

Figure 1. VH gene products generated by the PCR in a representative
experiment. PCR conditions were as described in Methods using the
following oligonucleotides in conjunction with the CHI1 primer (Ta-
bleI): lane /1, VH6; lane 2, VH2; lane 3, VHc/d; lane 4, VH1a/ 3a;
lane 5, VHIf/3f; lane 6, PM2 marker digested with Hind III.
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volume of 200 ul. After 1 h at room temperature, 100 ul of donkey
anti-mouse Sac-cel (IDS, Boldon, Tyne and Wear, UK) was added,
and the incubation was continued for 30 min. After addition of 1 ml of
assay buffer and vortexing, the mixture was centrifuged for 5 min at
1,000 g to sediment the immune complexes which were then counted
to determine the percent radiolabeled TPO bound. The affinities of the
F(ab)s for TPO were determined by Scatchard analysis (23) from
values obtained in the presence of increasing concentrations of un-
labeled TPO.

Competition between F(ab)s for binding to TPO. One F(ab) was
immobilized by incubation (total volume of 200 ul) with murine mAb
anti-human « (QE11) for 1 h at room temperature. After incubation
with 100 gl of Sac-cel (30 min at room temperature ), the immobilized
F(ab) complexes were diluted in assay buffer (see above) and centri-
fuged at 1,000 g (5 min at 4°C). The pellets were resuspended in nor-
mal human serum diluted 1:30 in assay buffer to saturate remaining
anti-« binding sites. In a separate set of tubes, increasing concentra-
tions of “free” F(ab) were preincubated with '**I-TPO for 1 h at room
temperature. Aliquots (100 ul) were then incubated for 30 min with
the immobilized F(ab) pellets and washed with assay buffer, and the
radioactivity bound to the Sac-cel was counted. Nonspecific binding
(~ 2% of total counts added) was subtracted to provide values for
specific binding to TPO.

Competition studies between F(ab) fragments and serum TPO auto-
antibodies. Sera from 10 patients with autoimmune thyroid disease
were studied. All sera contained high levels of TPO autoantibodies
(detectable by ELISA [24] at dilutions of 1:1,000 or greater). Binding
of '®I-TPO by serum autoantibodies was measured by precipitating the
antigen-antibody complex with Protein A (Pansorbin, Calbiochem-
Behring Corp., La Jolla, CA) (2) in the presence of increasing concen-
trations of F(ab) fragments. The F(ab) fragment-TPO complex, lack-
ing the CH2 domain of the Fc region, is not precipitated by Protein A.
Use of Protein A is effective for serum TPO autoantibodies (2) because
of the near absence of IgG3 TPO autoantibodies (4, 25).

Duplicate aliquots of sera were incubated for 1 h at room tempera-
ture with 'ZI-TPO, alone or with F(ab) fragments. Pansorbin (100 ul)
was added and the incubation was continued for 30 min. After addition

of 1 ml assay buffer (see above), the mixture was vortexed and centri-
fuged for 30 min at 1,000 g (4°C), supernatants were removed by
aspiration, and TPO remaining in the pellets was counted. In prelimi-
nary experiments, we determined serum dilutions needed to provide
binding values of 15-20% in the absence of F(ab) fragments. These
dilutions ranged from 1:1,000 to 1:7,000. Nonspecific '*’I-TPO bind-
ing in the presence of control serum without TPO antibodies was 2-5%
of total cpm added. This value was subtracted from the values obtained
with patients’ sera in calculating the percent inhibition by the F(ab)
fragments.

Results

Frequencies and subclass of TPO-specific F(ab)s. Screening 5
F(ab) combinatorial libraries from three patients (WR, TR,
and JA) yielded 30 TPO-binding clones which were plaque-
purified. The frequencies of TPO-binding F(ab)s (Table II)
differed markedly between patients. Far more TPO-specific
F(ab)s were obtained from patients TR and WR than from
patients SP and JA These frequencies refer only to TPO-bind-
ing F(ab)s and are not a measure of the frequency of the indi-
vidual VH and VL chains in the libraries.

For two patients, two different libraries were prepared. The
WR I, TR I, JA I, and the previously reported (10) SP I librar-
ies used the “CH 1" primer (Stratacyte ) which we subsequently
observed crossprimes for both IgG1 and IgG4 (26). The WR
IV and JA 1V libraries used an IgG4 specific primer (Table I).
Both IgG1 and IgG4 F(ab)s were isolated from the WR I and
SP I libraries, whereas only IgG4 F(ab)s were obtained from
the WR IV library and at a higher frequency. In contrast, the
TR I library yielded only IgG1 F(ab)s. The large number of
TPO-specific IgG4 F(ab)s obtained from the WR I library and
the lack of such F(ab)s from the TR I library is consistent with
the greater contribution of Ig4 to TPO autoantibodies in the
serum of patient WR relative to patient TR (data not shown).

Table II. Summary of TPO-specific Human F(ab)s Obtained from Four Graves’ Patients

H chain L chain
Library (frequency)* Subclass Clone Germline? VH JH Germline? VK JK
‘WR I (10/90,000) 1 1.7; 1.9 V1-3b 1 4 KLO12 1 1
4 4.2-5;4.8 HVILI 1 4 KLO12 1 2
4.10; 4.12

WR 1V (12/30,000) 4 4.21;4.22;4.25-35 HVIL1 1 4 KLO12 1 2
TR 1 (7/90,000) 1 1.3; 1.5 8-1B 3 4 KLO12 1 2
1 1.6; 1.8 HV1263 1 3 A3 2 2

1 1.9;1.13 V1-3b 1 4 A’ 1 4

1 1.10 Vi-3b 1 4 KLO12 1 1

JA 1(1/200,000) 1 1.9 HVILL1 1 6 KLO12 1 4

JA 1V (0/200,000) — —_

SP I¥ (3/180,000) 1 1.2 HVILI 1 6 KLO12 1 2
14;1.5 HVILI1 1 6 KLO12 1 1

4 4.6 HVILI 1 4 KLO012 1 2

Combinatorial libraries were constructed from mRNA prepared from intrathyroidal B cells (Methods). * Frequency of TPO-specific clones.
* Putative germline genes based on data presently available. § Previously published (11). Clone SP4.6 was obtained by recombining the SP1.2 L

chain with the parent SP I H chain library (26).
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A

CDR1

D I Q@ M T Q@ s P S s L s A s VvV 6 b R V T I T C R A § Q s I
KLO12 GAC ATC CAG ATG ACC CAG TCT CCA TCC TCC CTG TCT GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC CGG GCA AGT CAG AGC ATT
WR4.35 ..GC.. GT. ... ... ... «ov v T oo bl cin ts e il WG . ..T e e e T ... ... ... ..A
WR4.4 ..G C.. GT. LT .Gl L A.T . .. ... G..
WR4.12 ..G C.. GT. C.T ..G ... ... A.T . .. ... G
WR4.10 ..G C.. GT. T [ ¢ ¢ ..T . .. oo ..C
WR4.36 ..G C.. GT. ..G ..G . e LT .. ... ..C
WR4.33 ..G C.. GT. ..G ..G . e T .. oo .G
WR4.21 ..G C.. GT. ..6 ..G . oo W WT .. ... ..C
WR4.22 ..G C.. GT. ..G ..G . oo WWT .. ... ..C
WR4.32 ..G C.. GT. ..G ..G . eew LW T .. ... ..C
WR4.8 ..G C.. GT. G ..G ..G . e T e oo ..C
WR4.3 ..G C.. GT. cee .G .C. ..T . e ... ..C
WR4.37 ..G C.. GTC cee .G .C. ..T . e ... G.C
WR4.25 ..G C.. GT. ..C ..G . P e ... G.C
JAL.9 ..G C.. GT. .Gl e ..
SP1.5 ..G C.. GT. .. .. A,
SP1.4 ..G C.. GT. .G . .. .C. G
TR1.5 ..G C.. GT. .. ..C ..C .
WR1.9 ..G C.. GT. e ..
WR1.7 ..G C.. GT. e .A.
SP1.2 ..G C.. GT. T .AG . c e e e e e G AT
TRL.3 .G ... GT. ... ... tii tit tih vt tee e tee eee we. WG .C.
TR1.10 ..G TR € S S ¢ A

CDR2

s S8 Y L N ¥ Y Q@ Q@ K P 6 K A P K L L I Y A A S S L Q s
KLO12  AGC AGC TAT TTA AAT TGG TAT CAG CAG AAA CCA GGG AAA GCC CCT AAG CTC CTG ATC TAT GCT GCA TCC AGT TTG CAA AGT
WR4.2 LT CAA ... ... ... e e e S ¢ Y P * ... AL .C. ... .T. ...
WR4.35 ..T CAA ... ... C.. e Gl el . ..G ..A ... ... ... .C. ..o AL A oo T Ll
WR4.4 G.T C.. . e e . B L ..G ..A . .. .C. ..o AL e e WTL Ll
WR4.12 G.T C.. . e IG L. . SO .. .C. ... AL O
WR4.10 G.T C.. . . C.. e ..GG.. ..A . ..AG.. . .. .C. ... A, A, ... GT. ...
WR4.36 G.T C.. . . C.. e GG, ... ..A ..A . .. .C. ... AL A, ... GT. ..
WR4.33 GTT CA. . . C.. e GG L. ..A ..A . .. .C. ... AL A, ... GT. ..
WR4.21 G.T C.. . . C.. e ..6GG.G ... .. T ... .. A ..A . .. .C. oo AL .A. ... GT. G.
WR4.22 G.T C.. . . C.. e GG L. L ..A ..A . .. .C. ..o AL .A. ... GT. G.
WR4.32 G.T C.. . . C.. e ..G G.. . ..A ..A . .. .C. ... AL A, ... GT. G.A
WR4.8 G.T C.. . . C.. e ..G G.. . .G. ..A ..A . .. .C. ... AG . .A. ... GT. G.
WR4.3 G.TC.. . . C.. ..C L. GG.. . ..A ..A . .. .C. ..o AL A, ... GT. ..
WR4.37 G.T C.. . . C.. F R ¢ B ¢ P ..A ..A . .. .C. ... AL . .A. ... GT.
WR4.25 G.T C.G ... ... C.. ... .. A.. ..G ..T . G.. ..A ..A . .. .C. R GA. ... TT.
JAl.9 ... .. G ... ... ... AL e e e e e Ceh e e eee e e
SP1.5 G.. .AA ... ... ... G. ... G G.. . ..A . ... A P
SP1.4 G.. .C. . R S G.. AL C ... ... A.. Lo.Coll e
TR1.5 AL e e e e .. .C. ..A .TT
WR1.9 G.. ..G ... ... ... e e e .. G C.. A R I ¢
WR1.7 G.. ..G ... ... ... LA e .. Gol oLl G.. C.. A .. .C. ... TG .
SP1.2 ... .. G .C. .. ... C e LA L .C. .C. LA L.
TR1.3 G.. GA. C vt vih e e G.T . T e C .. G.. C ... ... .A. ..A ..C .C.
TR1.10 .C. .AA ... ... GC. A . ..AG C ..A ... LT . A. T .C. . G..

TPO-specific F(ab) gene usage. The nucleotide sequences
(Figs. 2 and 3) and derived amino acid sequences ( Figs. 4 and
5) of the 30 new and 4 previously reported TPO-specific
F(ab)s from patient SP (10, 11, 26) were compared to the
closest, presently known germline genes. It must be empha-
sized that, even with the recent expansion of VH germline se-
quence information (27), the germline assignments are puta-
tive and cannot be regarded as definitive without characteriza-
tion of the respective genes in these patients. Homologies are
shown simply as a means to categorize the large body of data.

The 34 TPO human autoantibodies appeared to use a rela-
tively restricted number and combination of H and L chain
genes (Figs. 2-5, summarized in Table II). In particular, L
chain putative germline gene KLO12 (28), a VK1, is used in
TPO autoantibodies from all four patients (Figs. 2 and 4). In
three patients, KLO12 was the only L chain obtained. However,
for this very large group of L chains, the possibility of other
germline gene usage cannot be excluded. Indeed the nucleotide
sequence pattern (Fig. 2) of the WR4 L chains differs from

those of the other KLO12-related L chains. In one patient
(TR), two other TPO-specific L chains were obtained; A’ (29)
isa VK1 (like KLO12) and A3 (29) is a VK2.

The TPO-specific F(ab) H usage appears to be slightly less
restricted than that of the L chain (Figs. 3 and 5, summarized
in Table II). Four different groups of H chains were used, in-
volving three VH1 and one VH3 germline genes. One group of
H chains related to HV1L1 (30) was used in three patients and
another smaller group similar to V1-3b (31) was used in two
patients. Both H chains are members of the VH1 family and
are used in combination with putative L chain germline genes
KLO0O12 or A’. Two of the TPO-specific H chains, related to the
VH3 gene 8-1B (32) and the VH1 gene HV1263 (33), were
found in a single patient. One of these H chains, related to
8-1B, was found in combination with a KL012-like L chain.
Out of a total of five H and L chain combinations, only one was
unique for both H and L chains (HV1263/A3). The D regions
could not be clearly assigned to any known germline se-
quences.
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G v P s R F S8 6 S G S8 G T »D

F T L T I s s L Q@ P E D F A T Y

KLO12 GGG GTC CCA TCA AGG TTC AGT GGC AGT GGA TCT GGG ACA GAT TTC ACT CTC ACC ATC AGC AGT CTG CAA CCT GAA GAT TTT GCA ACT TAC
WRG.A .ot it e e e . ve eee €. ... ... LA R - e s T e i e e e e e e
WR6.10 ... ... ... ..6 ... ... ..C ... .C. ... ... .A. ee ... .G. . S
WR4.36 ... ... ... ..G ... ... ..C ... .C. ... ... .A. ve v.. .G, P, P
WR4.33 G .. vl L€ it .G el ... LA cet ... .G. e e e e e B e e e T .
WR4.21 . .G ... ... ..C ... .C. ... ... .A. ..C ... .G. PP S
WR4.22 G it i .G L. C.oa.. ... .A. ..C ... .G. e e e e P
WR4.32 .G ... .. o€ ... .C. ... ... .A. ..C ... .G. e e e e R S
WR4.8 .G ... et .G ... C. ... ... .A. ..C ..T .G. e e e e e P
WR4.3 .G ... .. ..C ... C. ... ... .A. ..C ... .G. e e e e Y B
WR4.37 Y < R Y R ..C ... .G. e e e e e ce eee el WGT ... ...
WR4. 25 .G LA ... .. C ... .C. ... ... .A. .o ... .G. e e e e e e e e LT T.. L
JAL.9 L ee ... A ... .G
SP1.5 .G .
SP1.4 R - .C . e e e e e . .
TR1.5 L
WR1.9 . B o2 ¢ .G . N B
WR1.7 ee €C .ot vit eut . ..C . Guv vov e A C ... cuv ..C ..C ... .. T
SP1.2 e .. . C.. . A G e e
TR1.3 PR 2% .. .A. G .
TR1.10 B N PP « I C. ... ..G .
CDR3

Y ¢ Q Q@ S Y s T P
KLO12 TAC TGT CAA CAG AGT TAC AGT ACC CCT
WR4.2 ... ... B, SN
WR4.35 ... ... PO, SN ¢
WR4.4 ... ... e «e. .T. .C. ... ..G
WR4.12 ... ... ve ve. .T. .C. ... ..C
WR4.10 ... ... ... .. A..C.T. .CA ... .. G
WR4.36 ... ... ... .. A ... ... .CA..... G
WR4.33 ... ... ... .. A ... ... .CA..... G
WR4.21 ... ... se civ ... .CA .G ...
WR4.22 ... ... ve eit ... .CA ..G ...
WR4.32 ... ... ve eev ... .CA .G ...
WR4.8 ... ... ve cvv ... .CA .G ...
WR4.3 ... ... ... A...... .CA.G..G
WR4.37 ... ... ... .. A... ... .CA..G..G
WR4.25 ... ... ... .. A....T. .CA ... ...
‘;‘r}i'g """ s e A " Figure 2. Nucleotide sequences of TPO-specific F(ab) L chains. Designation of the
SPL.& ... . oonrm ettt e framework (FR) and CDRs and the JK germline genes are according to Kabat et al.
TR1.5 ... ... e C. ..G ..G (29). The sources of the closest currently known VK germline genes are KL012 (28)
WR1.9 ... ... . ..C ... GA. ... ..G  and A’and A3 (29). Sequences with identical nucleotides or silent substitutions were
:ﬁi:; oo Gc GA o ::g as follows: WR4.35-WR4.5; WR4.32-WR4.31; WR4.8-WR4.2/28.34. The nucleo-
TR1.3 ... ... s Gc. ... ..c tide sequences shown here and in Fig. 3 have been submitted to GenBank (Acces-
TR1.10 C.. ... G ... GC. .CG ..G --- sion No. L12061-L12103).

The large group of F(ab)s which are most closely related to
the germline gene HV1LI1 require further comment because
they appear to fall into two groups. The WR4 clones and SP4.6
are of subclass IgG4 while SP1.2 and JA 1.9 are of subclass IgG 1
(Table II). There are consistent nucleotide (Fig. 3) and amino
acid (Fig. 5) differences in the framework and complementar-
ity determining regions (CDRs), which suggest that these two
groups may not be derived from the same VH germline genes.
Although HVIL1 is the closest available germline gene
currently available, it may not be the precursor of either group
of F(ab)s. Finally, the D and J regions of the two F(ab) groups
are different. It should be stressed that each of these unique
VH, D, and J combinations was obtained from combinatorial
libraries prepared from three different patients.

F(ab) affinities for TPO. We expressed recombinant
F(ab)s representative of the different H and L chain permuta-
tions (Table III). Despite the use of multiple bacterial hosts
and culture conditions, only small amounts (up to ~ 40 ug
purified protein per liter) of purified protein could be obtained.
Nevertheless, this amount was sufficient for further studies.
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Calculation of the affinities (K,) for human TPO revealed all
F(ab)s to bind with high affinity (~ 107! M) (Table III),
comparable to autoantibodies in patients’ sera (2).

Domains on TPO recognized by F(ab)s. Competition be-
tween pairs of F(ab)s for binding to human TPO was used to
define their respective binding domains. In this approach, in-
creasing concentrations of one F(ab) were preincubated with
radiolabeled TPO and then added to a second, immobilized
F(ab). Representative experiments are shown in Fig. 6. For
example (Fig. 6 4), TR1.8 and TR1.9 each completely inhib-
ited TPO binding to immobilized TR1.9. In contrast, preincu-
bation of WRI1.7 and SP1.5 with radiolabeled TPO did not
prevent subsequent TPO binding to immobilized TR1.9. De-
spite these differences in their ability to compete for TPO bind-
ing to TR1.9, all free F(ab)s were capable of binding compara-
ble amounts of radiolabeled TPO in separate, concurrent direct
binding assays (Fig. 6 B).

The above experiment (Fig. 6, 4 and B) demonstrates over-
lap in the areas on TPO recognized by TR1.9 and TR1.8 but
not between TR1.9 and WR1.7 or SP1.5. Similarly, there was
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Figure 3. Nucleotide sequences of TPO-specific F(ab) H chains. Designation of the FR and CDRs is according to Tomlinson et al. (27). The
sources of the closest, presently known VH germline genes are HV1L1 (30), HV1263 (33), V1-3b (31), and 8-1B (32). SP4.6 is a F(ab) ob-
tained recently from patient SP (26). Sequences with identical nucleotides or silent substitutions were as follows: WR4.2-WR4.3,4, 5,8, 11, 21,
22, 33, 36, 37 with the exception that WR4.3, 5 and 8 have CAG, not GAG at codon 7; SP1.2-SP1.4, 5 (11); TR1.9-TR1.13.

overlap in the WR 1.7 binding domain with those of TR 1.8 and
SP1.5 but not with TR1.9 (Fig. 6 C). The SP1.5 binding do-
main overlapped that of TR1.3 and WRI1.7 but not TR1.9
(Fig. 6 D). The SP1.5 domain appeared to overlap to a small
extent with that of TR1.8 (Fig. 6 D). It is important to note
that these differences between F(ab) binding domains are not
related to differences in their affinities for TPO (Table III).
The above competition studies and others not shown, cover-

ing all permutations of immobilized and free F(ab)s, suggest
that there are two domains, A and B, recognized on human
TPO. The extent to which the F(ab)s interact with each do-
main is summarized in Table IV and is shown schematically in
Fig. 7. The binding sites of SP1.5 and WR4.5 lie completely
within the TPO A domain. TR1.9 binds entirely to the B do-
main. TR1.8 interacts predominantly with the B domain but
overlaps slightly with the A domain. Conversely, WR1.7 binds
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Figure 4. Derived amino acid sequences of TPO-specific F(ab) L chains. Designation of the FR and CDRs and sources of VK germline genes are
as in Fig. 2. (a) Same as WRA4.5; (b) same as WR4.31; (c) Same as WR4.27, 28, 34.

primarily to the A domain but also overlaps with TR1.8 (but lected for competition studies with serum TPO autoantibodies
not TR1.9) in the B domain. The binding site of TR1.3 spans because their binding sites do not overlap yet extensively cover
the A and B domains equally. the A and B domains.

Domains on TPO recognized by autoantibodies in patients’ A spectrum of competition patterns was observed in 10
sera. The question arises as to what extent the TPO binding randomly selected sera of patients with autoimmune thyroid
domains A and B reflect the binding domains of TPO autoanti- disease. In the representative examples shown, TPO autoanti-
bodies in patients’ sera. F(ab)s WR1.7 and TR1.9 were se- bodies in patients’ sera were inhibited preferentially by WR1.7

FR1 CDR1 FR2 CDR2 FR3 CDR3 (D)
HV1L1 QVQLV-QSGAEVNKPGASVKVSCKASGDTFT GYYMH WVRQAPGQGLEWMG WINPNSGGTNYAQKFQG RVTMTRDTSISTAYMELSRLRSDDTAVYYCAR
WR4.10 K.LEE....LK...... R.o...... YN.N DF.I. ............. v oo KNA. .RFSER.. G....... A..AT....TS..A...... F... GLGVGTWGL JH4
WR4.12 ..K.L.E....LK ...... R.o...... YN.N DF.I. ............. v ... KNA. .RFSER.. ........ A..AT....TS..A...... F... ... .
WR4.28 ..K.L.E....IK...... R.o...... YN.N D..I. ...... Ao, v oo KNA. .RFSE... ........ A..AT....TS..A...... F... ... I.....
WR4.27 ..K.L.E....IK...... R....V..Y..§ D.HI. ............. v ... KNA. .RFSER.. ........ A..AT....TS..A...... F... ...
WR4.34 ..K.L-E....IK...... R....P..¥S.S D..I. ............. v oo KNA..R.SE... ........ ALAV....TS............. Voo,
WR4.35 ..K.L.E....IK...... Ro...... Y..T D..I. ............. v oo KNA..R.SE... ........ ALAV. ... TS............. Voo,
WR4.32 ..K.L.E....LK...... R....P..Y..8 D..I. ......... AV..V ..., KNA..R.SE... ........ ALLAV. ... TS............. VP......
WR4 .31 ..K.L...... LK...... R.o...... YN.N D..I. ............. v oo KNA..RFSE... ........ A..AT....TS..A...... H... Voo
WR4.25 WKLo LK...... R....... Y..N D..I. ............. v oo KNA. .RFSER.A G....G..A..AT .TS..A...... F... . .......
WR4.2* ..K.L-E....ILK...... R....V..Y..S D.HI. ............. v o KNA..R.SE... .......... A.AV. . . VTS........... Voo
SP4.6 ..K.L-E....LKN..... R.o...... Y..N D.HV. ............. v oo KNA..R.SQ... .......... A..A..... TS.K......... Voo .
JAL.9 ..K.LEE..... Koo Y... Hooo oo I ...S..R.AARF..... ....... S....N.V..... G..F....... T TRTA JH6
SP1.2% .K.L-...... Koooooooooooon, Y... H...o ool I S..R.ARF..... ....... S....N.V..... G..F....F..T .
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WR1.9 ..K.LE..... I....... TL..E...D... N.MI. .............. ..iviuinn KIR..... «.ociiiinonn S.o..... PN .
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TR1.10 K.LE.... ... I.. ..HL. Y........ S.... . PK.o...ooooir i, LMN.............. VLGIIAADH
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TR1.5 Q.K.L-...... IH......... V...LN. KL... T............. B o ) B U D..I....... T.D...L....K S....... .

HV1263 QVQLV-QSGAEVKKPGSSVKVSCKASGGTF SSYAI SWVRQAPGQGLEW  MGRIIPILGIANYAQKF QGRVTITADKSTSTAYMELSSLRSEDTAVYYCAR
TR1.6 LKILE. .. ..ol Ro.o..oooii NKF.. H.I........... ..GF. . MF.TT......  ...... S.iiiiia, V...V...A.I....T GNDRGPVASFG JH3
TR1.8 WKULE. .ol R...RT..... KNF.. ....R......... ..GF. .MF.ATY..... .. Koo NI...D.NT.T.......... T A....AY....

Figure 5. Derived amino acid sequences of TPO-specific F(ab) H chains. Designation of the FR and CDRs and sources of the VH germline genes
are as in Fig. 3. SP4.6 is a F(ab) obtained recently from patient SP (26). The Q to K substitution at position 3 represents the restriction site
introduced by the PCR oligonucleotide. The presence of an E at position 6 (not in the putative germline gene) results from the use of the 1a/3a
oligonucleotide primers (see Table I). (a) Same as WR4.3, 4, 5, 8, 11, 21, 22, 33, 36, 37 with the exception that WR4.3, 5, and 8 have Q (for

E) at position 7; (b) same as SP1.4, 5 (11); (¢) Same as TR1.13.

Regulation of Neutrophil Transepithelial Migration by Lipoxins 69



A : Immobilized TR1.9 B

% 125 -TPO Bound

14+ 12+
WR1.7
12- 10-
TR1.9
104
2 8 TR1.8
2 SP1.5
84 m
(o]
£ 6
& &
4 ® 4
2- 2+
TR1.8
0 \{\ T T T 0 \t\ T T T
o 10" 10" 10° o 10" 101 10
Free F(ab) [M] F(ab) [M]
C: Immobilized WR1.7 D : Immobilized SP1.5
9- 10— TR1.9
8
TR1.9
o °
c 6- 3
3 2 6 TR1.8
8 lo) Figure 6. Domains on TPO recognized
e g by F(ab)s. Increasing concentrations
= <"~"_I 4 of one F(ab) were preincubated with
b s 7] radiolabeled TPO and then added to
L 34 B3 a second, immobilized F(ab) (Meth-
ods). The immobilized F(ab) was
2+ sP1.5 TR1.9 (panel 4), WR1.7 (panel C),
TR1.8 and SP1.5 (panel D). Confirmation of
SP1.5 TR1.3  the direct binding potency of the free
04—\ R1.7 0\ WR1.7  F(ab)s was determined concurrently in
Wl § ! ! A 1 ' 10 ' o each experiment. A representative con-
0 10° 1010 109 0 10 10 10 trol (panel B for the experiment in
Free F(ab) [M] Free F(ab) [M] panel A) is shown.

(Fig. 8 A), preferentially by TR1.9 (Fig. 8 B) or in a more
balanced proportion by both F(ab)s (Fig. 8 C). Overall, of the
10 sera, five were inhibited preferentially by WR1.7, two by
TR1.9, and three to approximately the same extent by WR1.7

and TR1.9.
Of greater importance was the efficacy of the combination

of the WR1.7 and TR1.9 F(ab)s in competing for serum TPO
autoantibody binding. In the 10 sera, this combination inhib-
ited TPO autoantibody binding by 83+5% (mean+SEM).
These figures may underestimate the full extent of the inhibi-
tion because of limitations to the highest concentrations of
F(ab)s which could be used for competition.

Discussion

There is evidence that the ability to produce TPO autoantibod-
ies is inherited as an autosomal dominant trait in women with
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incomplete penetrance in men (34, 35). The location and na-
ture of the gene or gene cluster responsible for this inheritance
are unknown. Polymorphisms at the VH locus are associated
with autoantibody production (31, 36). Therefore, knowledge
of the genetic background of TPO-specific autoantibodies may
provide insight into the basis for the inheritance of thyroid
autoimmunity.

The present report identifies and characterizes the genes
coding for a comprehensive panel of high-affinity human auto-
antibodies to a major, organ-specific autoantigen. These recom-
binant F(ab)s cover a region on thyroid peroxidase recognized
by a majority (~ 80%) of autoantibodies in the sera of patients
with thyroiditis, the most common autoimmune disease. In the
more intensively studied connective tissue diseases, genes for
numerous autoantibodies have been characterized. Initially,
the “natural” and disease-associated autoantibodies cloned
were IgM, many of low affinity and with polyspecificity (37,



Table I11. Affinities for Human TPO
of Expressed F(ab) Fragments

H chain L chain Clone Affinity
K, (M)
HVILI1 KLO12 WR4.5 3.0;3.2x%x 107"
SP1.2* 8.0+1.0 x 107"
SP1.4* 2.0;2.0 X 10710
SP1.5* 8.0+1.0 x 107"
SP4.6* 1.0£0.2 X 107'°
V1-3b KLO012 WR1.7 1.2;2.9 x 1071
TRI1.10 1.7; 1.4 X 107
8-1B KLO012 TR1.3 5.1x0.1 x 1071°
HV1263 A3 TR1.8 2.7+0.1 X 1071°
V1-3b A TR1.9 1.5£0.2 X 107'°

Classification is according to their putative germline genes based on
presently available data. Values from duplicate or triplicate experi-
ments were calculated by Scatchard analysis (23). * Previously re-
ported (11, 26).

38). More recently, high-affinity IgG-class rheumatoid factors
and antibodies to double-stranded DNA have been produced
and defined (39-42). However, the combination of a compre-
hensive autoantibody repertoire and its antigenic domain(s)
has not been defined previously in either organ-specific or non-
organ-specific autoimmune disease in humans.

From thyroid tissue-infiltrating B cells from three patients
with autoimmune thyroiditis, we have cloned and determined
the nucleotide sequences of 30 new TPO-specific F(ab)s. Previ-
ously, we had reported information on four antibodies ob-
tained from another patient (10, 11, 26). The most remarkable
finding from analysis of the putative germline genes used for
TPO human autoantibodies is the relatively restricted number
and combinations of H and L chain genes. Similarly, there is
evidence for restricted T cell receptor V gene usage in the early
stages of autoimmune thyroid disease (reviewed in reference
43). In our study of 34 recombinant F(ab)s, we found a total
of only five different H and L chain combinations involving
four H chains and three L chains. In addition, one combina-
tion of H and L chains (HV1L1 and KL012) was obtained

Table IV. Domains on TPO Recognized by F(ab)s as Determined
by Competition between Pairs of F(ab)s for Antigen Binding

TPO domains

Clone A B H chain L chain
SP1.5 ++++ - HVILI KLO012
WR4.5 ++++ - HVILI1 KLO12
WRI1.7 ++++ ++ V1-3b KLO12
TR1.3 ++++ ++++ 8-1B KLO12
TR1.8 + ++++ HV1263 A3
TRI1.9 - ++++ V1-3b A’

Classification is according to their putative germline genes based on
presently available data. ++++, complete; —, no overlap with the
indicated domain. + or ++, partial overlap.

DOMAIN A B

TR1.8

TR1.9

Figure 7. Schematic representation of the binding domains on TPO
for the expressed F(ab)s.

from combinatorial libraries prepared from three patients. An-
other H and L chain combination (V1-3b and KLO012) was
found in libraries prepared from two patients. These combina-
tions involved different H chains (HV1L1 and V1-3b) with the
same L chain (KL012). As stated previously, these apparent H
and L chain restrictions are based on presently available infor-
mation on germline genes in the population. Without data on
the germline genes in the individual patients, it is possible,
particularly for the L chains, that additional germline genes
may be involved.

Studies of “natural” autoantibodies and autoantibodies to
erythrocyte antigens have shown over-representation of VH4
family genes (38, 44). In contrast, four-fifths of our TPO-speci-
fic F(ab) combinations were derived from VH1 family germ-
line genes. The other F(ab) utilized a VH3 germline gene.
Among the VHl-encoded TPO F(ab)s, the most abundant
were related to the recently described HV1LI1 germline gene,
which is utilized in a rheumatoid factor (30). Because of the
pattern of nucleotide differences between our TPO F(ab)s and
HVI1LLI, it is possible that the former are not derived from
HVI1LI1 but from another, as yet undescribed, germline gene.

Three factors could contribute to the apparent TPO-speci-
fic VH and VL gene restriction that we observed: (a) the use of
thyroid-infiltrating B cells, ( ») limitations imposed by the oligo-
nucleotide primers used in the PCR, and (c) overrepresenta-
tion of particular VH and VL genes in our libraries. First, re-
garding the source of the B cells, our panel of TPO-specific
F(ab)s was only obtained because we used lymphocytes from
the thyroid, which is enriched with TPO-specific B cells (re-
viewed in reference 13). Information on TPO autoantibodies
generated from extrathyroidal sources would be of interest but
would be beyond the scope of the present study. Further, this
goal may not be feasible given the statistics of the H and L
chain combinatorial approach and the ethical impossibility of

_boosting our patients with TPO, as was done with tetanus tox-

oid (16, 45).

It is unlikely that the TPO-specific F(ab) H and L chain
gene restriction can be attributed to limitations in the oligonu-
cleotide primers used in the study. In the case of the H chains,
we used a wide range of variable region primers designed to
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A: Serum 1 (1/1000)

B: Serum 2 (1/3200)

C: Serum 3 (1/3200)
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Figure 8. Domains on TPO recognized by autoantibodies in three representative sera (panels 4, B, and C) from patients with autoimmune thy-
roid disease. F(ab)s WR1.7 and TR1.9, alone or in combination, were used to compete for serum autoantibody binding to radiolabeled TPO

(Methods).

cover all six VH families (Table I). In addition, the F(ab)s
obtained used variable regions genes from more than one VH
(VHI, VH3) and VK (VKI1, VK2) family. Our libraries also
contain VH4 genes as we obtained this family in a F(ab), the
sequence of which is not included in the results because we
could not express the protein.

We have evidence against the possibility of over-representa-
tion in our libraries of particular VH and VL genes. In separate
studies (26), we observed that functional HVIL1 VH and
KLO012 VL genes in a library are relatively rare, ~ 1:5,000 and
1:500, respectively. Finally, the most important evidence sug-
gesting that the TPO-specific VH and VL gene restriction ob-
served is not a consequence of all three potential limitations
discussed above is that the F(ab)s expressed in our repertoire
represent more than 80% of TPO autoantibodies present in
patients’ sera.

Whether or not the combinatorial library approach can gen-
erate the H and L chain combinations observed in vivo is under
debate (46, 47). The same pairing of H and L chains was ob-
served in murine monoclonal antibodies (specific for influenza
hemagglutinin) generated by both conventional hybridoma
technology and the combinatorial recombinant F(ab) ap-
proach (48). In contrast, in a study of hapten antibodies, the in
vivo H and L chain pairing was not attained by the combina-
torial approach (46). In addition, some studies have shown H
chain promiscuity in pairing with L chains (47). Therefore, we
cannot be certain that the TPO-specific H and L chain combi-
nations reflect the in vivo situation. However, using a TPO-
specific H (or L) chain to randomly search for other L (or H
chains) from the same patient capable of forming F(ab)s with
high affinity for TPO, we did not observe promiscuity and only
obtained closely related L and H chains from the same VK and
VH families (26). Further, our F(ab)s had very high affinities
for TPO (~ 107'° M), comparable with those of serum TPO
autoantibodies (2).

Turning to the other major aspect of our study, the major-
ity of TPO autoantibodies in patients’ sera interact with the
protein in its native, undenatured state (11, 49, 50). Despite
studies using different approaches (reviewed in reference 5),
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the number of epitopes recognized by TPO autoantibodies, or
even the number of antigenic domains involved, was un-
known. Previous evidence, with which the present data are in
agreement, suggested that the human autoimmune response to
TPO (51, 52), like that to thyroglobulin (53), is limited to a
few epitopic domains.

Using a comprehensive repertoire of recombinant human
F(ab)s, we now define two major contiguous epitopic areas, A
and B, on TPO. Most IgG-class serum TPO autoantibodies
interact with the A and B domains. TPO is a large (933 amino
acids, 107 kD) (54) globular protein relative to the size of the
F(ab)bindingsite (55). For this reason and because a combina-
tion of only two different F(ab)s can compete for binding by
most TPO autoantibodies, the autoimmunogenic region com-
prises a single, relatively small area (domains A + B). It is
possible that serum TPO autoantibodies to other regions of
TPO, including linear epitopes (reviewed in reference 5), exist
but these will comprise a small proportion of the repertoire
(11, 56).

The present information now permits analysis of the rela-
tionship between H and L chain genes and the antigenic do-
mains on TPO recognized by TPO autoantibodies. Such an
analysis has not previously been possible in an autoimmune
disease. The clearest association is between the L chain gene
KLO012 and the A domain on TPO (Table IV). In contrast, the
B domain is most closely associated with the L chains A’ and
A3. The H chains are more diverse and may alter the fine
specificity of the F(ab) binding site by interacting with anti-
genic areas adjacent to the L chain binding site. In some in-
stances, exemplified by TR1.3 (VH 8-1b/VK KL012), the H
chain appears to shift the F(ab) binding from the A domain to
cover both A and B domains.

Of interest is the observation that F(ab)s of both subclass
IgG1 and IgG4 can interact with the A domain on TPO. All of
the IgG4 and some of the IgG1 F(ab)s appear to be related to
the VHI germline gene HV1L1. Use of the same VH germline
gene by F(ab)s of two IgG subclasses raises the possibility of
subclass switching. In rheumatoid factors, the same germline
gene has clearly been shown to code for a low-affinity IgM and



subsequently for an affinity-matured IgG molecule (42). In
contrast, observations of crossreactive idiotypes in human anti-
bodies to Haemophilus influenzae b polysaccharide indicate
independent B cell lineages in IgG1 and IgG2 antibodies (57).
However, in the case of the TPO-specific IgG1 and IgG4
F(ab)s, we feel that subclass switching is unlikely. First, there
are significant differences between the VH1 components of the
IgG subclasses. Second, these H chains have totally different D
and J regions.

Studies in mice have provided evidence for (58-60) and
against (61) restricted H and L chain usage in rheumatoid fac-
tors and DNA autoantibodies. Similarly, a diverse array of im-
munoglobulin genes occurs in human rheumatoid factors de-
rived from rheumatoid synovial tissue (62 ). A possible explana-
tion for these divergent observations is that the autoantibodies
are interacting with a wide range of epitopes. For example,
thyroglobulin autoantibodies, induced by immunization in
mice, interact with many epitopes and are derived from a large
number of V region gene segments (63). In contrast, our data
in an organ-specific autoimmune disease, indicate that disease-
associated autoantibodies recognize a limited antigenic region
on TPO. Such autoantibodies do, indeed, appear to be asso-
ciated with restricted H and L chain usage.
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Note Added in Proof. We note the recent report by Hexham et al.
(1992. Autoimmunity. 14:169-172) of the H and L chain variable re-
gion sequences of a human monoclonal TPO autoantibody generated
by fusion of Hashimoto thyroid lymphocytes with a mouse myeloma
line.
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