Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

A mutation of the glucocorticoid receptor in primary cortisol resistance.
D M Malchoff, … , D Rowe, C D Malchoff
D M Malchoff, … , D Rowe, C D Malchoff
Published May 1, 1993
Citation Information: J Clin Invest. 1993;91(5):1918-1925. https://doi.org/10.1172/JCI116410.
View: Text | PDF
Research Article

A mutation of the glucocorticoid receptor in primary cortisol resistance.

  • Text
  • PDF
Abstract

The precise molecular abnormalities that cause primary cortisol resistance have not been completely described. In a subject with primary cortisol resistance we have observed glucocorticoid receptors (hGR) with a decreased affinity for dexamethasone. We hypothesize that a mutation of the hGR glucocorticoid-binding domain is the cause of cortisol resistance. Total RNA isolated from the index subject's mononuclear leukocytes was used to produce first strand hGR cDNAs, and the entire hGR cDNA was amplified in segments and sequenced. At nucleotide 2,317 we identified a homozygous A for G point mutation that predicts an isoleucine (ATT) for valine (GTT) substitution at amino acid 729. When the wild-type hGR and hGR-Ile 729 were expressed in COS-1 cells and assayed for [3H]-Dexamethasone binding, the dissociation constants were 0.799 +/- 0.068 and 1.54 +/- 0.06 nM (mean +/- SEM) (P < 0.01), respectively. When the wild-type hGR and hGR-Ile 729 were expressed in CV-1 cells that were cotransfected with the mouse mammary tumor virus long terminal repeat fused to the chloramphenicol acetyl transferase (CAT) gene, the hGR-Ile 729 conferred a fourfold decrease in apparent potency on dexamethasone stimulation of CAT activity. The isoleucine for valine substitution at amino acid 729 impairs the function of the hGR and is the likely cause of primary cortisol resistance in this subject.

Authors

D M Malchoff, A Brufsky, G Reardon, P McDermott, E C Javier, C H Bergh, D Rowe, C D Malchoff

×

Loading citation information...
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts