Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Human insulin-like growth factor I receptor function in pituitary cells is suppressed by a dominant negative mutant.
D Prager, … , S Gebremedhin, S Melmed
D Prager, … , S Gebremedhin, S Melmed
Published November 1, 1992
Citation Information: J Clin Invest. 1992;90(5):2117-2122. https://doi.org/10.1172/JCI116096.
View: Text | PDF
Research Article

Human insulin-like growth factor I receptor function in pituitary cells is suppressed by a dominant negative mutant.

  • Text
  • PDF
Abstract

Hybrid receptors were studied in GC rat pituitary cells overexpressing either wild-type 950Tyr (WT) human insulin-like growth factor I (IGF-I) receptors or mutant human IGF-I receptors truncated at position 952 in the beta subunit transmembrane region (952STOP). 125I-IGF-I binding was increased in both 950Tyr (WT) (14-fold) and truncated human IGF-I receptor (952STOP) stable transfectants (50-fold), when compared to untransfected cells that contained endogenous rat IGF-I receptors. Metabolic cell labeling followed by immunoprecipitation with monoclonal alpha and beta subunit-specific antibodies revealed the presence of hybrid rat/truncated human receptors, truncated transfected human receptors, and WT human IGF-I holotetramers. Both mutant and hybrid receptors were degraded slower than 950Tyr (WT) receptors (> 16 h). Despite their markedly increased ligand binding and prolonged receptor half-life, 952STOP transfectants failed to transduce the IGF-I signal to suppress growth hormone (GH). Also, they neither underwent autophosphorylation nor phosphorylated endogenous proteins. The expected suppression of GH by endogenous rat IGF-I receptors was completely abrogated in 952STOP transfectants (P < 0.001 compared to untransfected cells). Mutant 952STOP cells were therefore completely devoid of biological signaling to GH despite the presence of endogenous rat IGF-I receptors. Thus mutant IGF-I receptors block ligand-mediated endogenous rat IGF-I signaling by functioning as a dominant negative forming nonfunctional human/rat hybrid receptors. Defective IGF-I receptors may function therefore as dominant negative phenotypes which suppress normal receptor responses in pituitary cells.

Authors

D Prager, H Yamasaki, M M Weber, S Gebremedhin, S Melmed

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts