Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115974

Association of amino acid sequences in the HLA-DQB1 first domain with antitopoisomerase I autoantibody response in scleroderma (progressive systemic sclerosis).

J D Reveille, E Durban, M J MacLeod-St Clair, R Goldstein, R Moreda, R D Altman, and F C Arnett

Department of Internal Medicine, University of Texas Health Science Center, Houston 77225.

Find articles by Reveille, J. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Texas Health Science Center, Houston 77225.

Find articles by Durban, E. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Texas Health Science Center, Houston 77225.

Find articles by MacLeod-St Clair, M. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Texas Health Science Center, Houston 77225.

Find articles by Goldstein, R. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Texas Health Science Center, Houston 77225.

Find articles by Moreda, R. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Texas Health Science Center, Houston 77225.

Find articles by Altman, R. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Texas Health Science Center, Houston 77225.

Find articles by Arnett, F. in: JCI | PubMed | Google Scholar

Published September 1, 1992 - More info

Published in Volume 90, Issue 3 on September 1, 1992
J Clin Invest. 1992;90(3):973–980. https://doi.org/10.1172/JCI115974.
© 1992 The American Society for Clinical Investigation
Published September 1, 1992 - Version history
View PDF
Abstract

Previous studies in Caucasians with progressive systemic sclerosis (PSS) have suggested associations of antitopoisomerase I (antitopo I) autoantibodies with either serologically defined HLA-DR2 or DR5. To better define class II HLA associations with the antitopo I response, 161 PSS patients (132 Caucasians and 29 American blacks) were studied for antitopo I autoantibodies by immunodiffusion and immunoblotting, and their HLA-DRB1, DRB3, DQA1, and DQB1 alleles were determined by restriction fragment length polymorphic analysis and DNA oligotyping. Among Caucasians with antitopo I, HLA-DR5(DRB1*1101-*1104), DRB3*0202 and DQw3 (DQw7,8,9) were significantly increased in frequency. In American blacks, however, only HLA-DQB1*0301(DQw7) was significantly increased. The presence of HLA-DQB1*0301(DQw7) and other HLA-DQB1 alleles bearing the uncharged polar amino acid residue tyrosine at position 30 of the outermost domain was found in all antitopo I-positive Caucasian PSS patients compared with 66% of antitopo I-negative PSS patients (pc = 0.007) and 70% of normal controls (pc = 0.008), as well as all antitopo I-positive black patients. The association with HLA-DQB1 was independent of HLA-DR5(DRB1*1101-*1104) or any other HLA-DRB1, DRB3, or DQA1 alleles. Alternative or additional candidate epitopes for this autoimmune response include alanine at position 38 and threonine at position 77 of these same DQB1 alleles. These data suggest that genetic predisposition to the antitopo I response in PSS is associated most closely with the HLA-DQB1 locus.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 973
page 973
icon of scanned page 974
page 974
icon of scanned page 975
page 975
icon of scanned page 976
page 976
icon of scanned page 977
page 977
icon of scanned page 978
page 978
icon of scanned page 979
page 979
icon of scanned page 980
page 980
Version history
  • Version 1 (September 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts