Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile. Evidence that cholesterol does not nucleate classic monohydrate plates.
F M Konikoff, … , D M Small, M C Carey
F M Konikoff, … , D M Small, M C Carey
Published September 1, 1992
Citation Information: J Clin Invest. 1992;90(3):1155-1160. https://doi.org/10.1172/JCI115935.
View: Text | PDF
Research Article

Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile. Evidence that cholesterol does not nucleate classic monohydrate plates.

  • Text
  • PDF
Abstract

Precipitation of cholesterol in gallbladder bile is believed to produce platelike cholesterol monohydrate crystals directly. We report complementary time-lapse microscopic studies of cholesterol crystallization from model bile that reveal initial assembly of filamentous cholesterol crystals covered by a monomolecular layer of lecithin. Over a few days, the filaments evolved through needle, helical, and tubular microstructures to form classical platelike cholesterol monohydrate crystals. Similar crystallization phenomena were observed in human gallbladder biles from cholesterol but not pigment stone patients. Synchrotron x-ray diffraction of the earliest filaments suggested a cholesterol monohydrate polymorph or admixture with an anhydrous cholesterol precursor. However, density gradient centrifugation of filamentous crystals revealed that their density was 1.032 g/ml, consistent with anhydrous cholesterol. Conventional x-ray diffraction of transitional crystalline forms was consistent with pure cholesterol monohydrate crystals, as were the equilibrium platelike crystals. These novel findings suggest that crystalline cholesterol in bile may not be completely mature or hydrated initially, but undergoes a series of transformations to become thermodynamically stable monohydrate plates. These observations have important implications for understanding the control of cholesterol crystallization in bile, as well as explaining putative crystal cytotoxicity during gallstone formation.

Authors

F M Konikoff, D S Chung, J M Donovan, D M Small, M C Carey

×

Full Text PDF | Download (2.09 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts