The reason why hyperinsulinemia is associated with essential hypertension is not known. To test the hypothesis of a pathophysiologic link mediated by the sympathetic nervous system, we measured the changes in forearm norepinephrine release, by using the forearm perfusion technique in conjunction with the infusion of tritiated NE, in patients with essential hypertension and in normal subjects receiving insulin intravenously (1 mU/kg per min) while maintaining euglycemia. Hyperinsulinemia (50-60 microU/ml in the deep forearm vein) evoked a significant increase in forearm NE release in both groups of subjects. However, the response of hypertensives was threefold greater compared to that of normotensives (2.28 +/- 45 ng.liter-1.min-1 in hypertensives and 0.80 +/- 0.27 ng.liter-1 in normals; P less than 0.01). Forearm glucose uptake rose to 5.1 +/- .7 mg.liter-1.min-1 in response to insulin in hypertensives and to 7.9 +/- 1.3 mg.liter-1.min-1 in normotensives (P less than 0.05). To clarify whether insulin action was due to a direct effect on muscle NE metabolism, in another set of experiments insulin was infused locally into the brachial artery to expose only the forearm tissues to the same insulin levels as in the systemic studies. During local hyperinsulinemia, forearm NE release remained virtually unchanged both in hypertensive and in normal subjects. Furthermore, forearm glucose disposal was activated to a similar extent in both groups (5.0 +/- 0.6 and 5.2 +/- 1.1 mg.liter-1.min-1 in hypertensives and in normals, respectively). These data demonstrate that: (a) insulin evokes an abnormal muscle sympathetic overactivity in essential hypertension which is mediated by mechanisms involving the central nervous system; and (b) insulin resistance associated with hypertension is demonstrable in the skeletal muscle tissue only with systemic insulin administration which produces muscle sympathetic overactivity. The data fit the hypothesis that the sympathetic system mediates the pathophysiologic link between hyperinsulinemia and essential hypertension.
G Lembo, R Napoli, B Capaldo, V Rendina, G Iaccarino, M Volpe, B Trimarco, L Saccà
Usage data is cumulative from December 2024 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 424 | 37 |
| 121 | 12 | |
| Scanned page | 293 | 2 |
| Citation downloads | 112 | 0 |
| Totals | 950 | 51 |
| Total Views | 1,001 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.