JCI The Journal of Clinical Investigation

Immunoglobulin heavy chain gene expression in peripheral blood B lymphocytes.

C Huang, ..., R S Schwartz, B D Stollar

J Clin Invest. 1992;89(4):1331-1343. https://doi.org/10.1172/JCI115719.

Research Article

cDNA libraries for IgM heavy chain variable regions were prepared from unmanipulated peripheral blood lymphocytes of two healthy people. Partial sequencing of 103 clones revealed VH gene family use and complete CDR3 and JH sequences. The libraries differed in the two subjects. In one person's cDNA the VH5 family was overexpressed and the VH3 family underexpressed relative to genomic complexity. In the second person's cDNA, VH3 was most frequently expressed. In both libraries, JH4 was most frequent. VH segments of several clones were closely related to those in fetal repertoires. However, there was also evidence of mutation in many cDNAs. Three clones differed from the single nonpolymorphic VH6 germline gene by 7-13 bases. Clones with several differences from VH5 germline gene VH251 were identified. CDR3 segments were highly diverse. JH portions of several CDR3's differed from germline JH sequences. 44% of the clones had DH genes related to the DLR and DXP families, most with differences from germline sequences. In 11 DLR2-related sequences, several base substitutions could not be accounted for by polymorphism. Thus, circulating IgM-producing B cell populations include selected clones, some of which are encoded by variable region gene segments that have mutated from the germline form.

Find the latest version:

https://jci.me/115719/pdf

Immunoglobulin Heavy Chain Gene Expression in Peripheral Blood B Lymphocytes

Chichi Huang,* A. Keith Stewart,[‡] Robert S. Schwartz,[‡] and B. David Stollar*

*Department of Biochemistry, Tufts University Schools of Medicine, Dental Medicine, and Veterinary Medicine and Sackler School of Graduate Biomedical Sciences, and *Division of Hematology/Oncology, Department of Medicine, New England Medical Center Hospitals, Boston, Massachusetts 02111

Abstract

cDNA libraries for IgM heavy chain variable regions were prepared from unmanipulated peripheral blood lymphocytes of two healthy people. Partial sequencing of 103 clones revealed V_H gene family use and complete CDR3 and J_H sequences. The libraries differed in the two subjects. In one person's cDNA the V_H5 family was overexpressed and the V_H3 family underexpressed relative to genomic complexity. In the second person's cDNA, V_H3 was most frequently expressed. In both libraries, J_H4 was most frequent. V_H segments of several clones were closely related to those in fetal repertoires. However, there was also evidence of mutation in many cDNAs. Three clones differed from the single nonpolymorphic $V_H 6$ germline gene by 7–13 bases. Clones with several differences from $V_H 5$ germline gene V_H251 were identified. CDR3 segments were highly diverse. J_{H} portions of several CDR3's differed from germline J_{H} sequences. 44% of the clones had D_H genes related to the D_{LR} and D_{XP} families, most with differences from germline sequences. In 11 D_{LR2}-related sequences, several base substitutions could not be accounted for by polymorphism. Thus, circulating IgM-producing B cell populations include selected clones, some of which are encoded by variable region gene segments that have mutated from the germline form. (J. Clin. Invest. 1992. 89:1331-1343.) Key words: antibody • B cell • cDNA library • diversity • repertoire

Introduction

The extensive diversity of antibody variable regions is due in large measure to the division of germline coding regions into segments, e.g., the V_H , D_H , and J_H segments which together encode the heavy chain variable region (1, 2). Random combinations of the V gene segments give the immune system a vast potential repertoire. In the mouse, for example, the potential repertoire exceeds 10⁹, and perhaps 10¹⁰, different antigen binding sites (3). But because there are only 10⁸ B cells in a mouse, only certain elements of the potential repertoire are represented at any given time in the actual repertoire of the animal. Our understanding of how B cells use the tremendous capacity of the potential repertoire to generate the actual repertoire is limited.

Results of previous studies suggest that the actual, or *expressed*, immunoglobulin repertoire is not simply a random representation of the germline V gene potential. Nonrandom V_H gene utilization is especially marked in the early stages of fetal development in both mice and humans (4–10), in malignant B cells (11, 12), in CD5⁺ B cells (13, 14), and in autoantibody-forming B cells (15, 16). However, the lack of information about the B cell repertoire in normal adults makes it difficult to assess the significance of the restricted use of immunoglobulin V genes during development and in disease. It is not known, for example, whether the preferential expression of $V_H 5$ and $V_H 6$ gene families early in ontogeny (4) is a peculiarity of fetal B cells, or whether the B cell repertoire of normal adults can also manifest such a bias.

Until recently, investigations of the human B cell repertoire were, for technical reasons, confined to EBV-transformed B cell clones, neoplastic B cells, and a relatively small number of hybridoma-produced monoclonal antibodies (17, 18). In situ hybridization with V_H gene probes can greatly increase the number of B cells that can be surveyed (19, 20), and polymerase chain reaction (PCR)¹-based analyses have increased the number even more (21-26). Nevertheless, all these methods introduce their own bias. For example, neither the mitogenstimulated B cells used for most in situ hybridization studies nor EBV-transformed B cells are representative of the entire population (27). cDNA amplification by PCR has allowed analysis of CDR3 sequences of human immunoglobulin cDNA populations (21, 24, 26), and it has been used in mice to estimate the frequency of rearrangement or expression of members of a given gene family (23, 28). But the lack of universal primers that would enable unbiased amplification of all V gene families has limited the scope of the PCR technique for studies of the expressed immunoglobulin repertoire.

We have recently described a sensitive method for amplifying the variable regions of immunoglobulin cDNAs of all V_H families in a diverse mixture of B cells (29). The cDNA is amplified without using primers from variable region sequences, thus avoiding technical bias in the selection of amplified cDNA populations. The representative sampling allowed by the method permits analysis of immunoglobulin genes expressed by unmanipulated B cells, and gives a "snapshot" of the actual immunoglobulin repertoire at a given time. We report here an analysis of 103 unique clones from IgM libraries obtained by this method from two normal healthy adults. The clones were from cDNA libraries prepared from peripheral blood lymphocytes that were not stimulated in vitro, and whose only manipulation was centrifugation through Ficoll-Hypaque.

Address reprint requests to Dr. Stollar, Department of Biochemistry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111.

Received for publication 11 September 1991 and in revised form 25 November 1991.

J. Clin. Invest.

[©] The American Society for Clinical Investigation, Inc. 0021-9738/92/04/1331/13 \$2.00 Volume 89, April 1992, 1331–1343

^{1.} Abbreviation used in this paper: PCR, polymerase chain reaction.

Methods

Preparation of cDNA Libraries from human peripheral blood lymphocytes. cDNA libraries were prepared from peripheral blood lymphocytes as described previously (29). Lymphocytes were centrifuged through a Ficoll-Hypaque medium and washed with PBS; they were not further manipulated before preparation of RNA. Double-stranded cDNA was synthesized from total cellular RNA according to the method of Gubler and Hoffman (30) and blunt-ended with T4 DNA polymerase. The primer for cDNA synthesis was complementary to a sequence within the $C\mu 1$ region (29). Two steps of PCR amplification were performed, as described previously (29). The first step was primed by oligonucleotide linkers attached to the ends of the double-stranded (ds) cDNA. The products were ligated into M13mp19 RF DNA. A second amplification used a downstream-nested C μ primer and an upstream primer within the M13 vector DNA. The second PCR products were again ligated to M13 RF DNA. This ligation mixture was transformed into DH5 α bacteria to form the cDNA library for screening.

Analysis of the libraries. Libraries were screened for hybridization with a degenerate human J_H gene oligonucleotide probe and V_H familyspecific oligonucleotide probes (17). M13 plaques were lifted onto GeneScreen membranes, which were then prehybridized, hybridized, and washed as described (31). Inserts in M13 phage were sequenced by chain termination with dideoxynucleoside triphosphates and Sequenase (US Biochemical Co., Cleveland, OH). For full V region analysis, sequencing was performed with two or three different primers, giving large overlaps that verified sequencing accuracy. Sequences were compared to those in the human Genbank database with the FASTA program of the GCG software package. The BESTFIT, LINEUP, and TRANS-LATE programs were used for further sequence analysis.

Results

Amplified IgM cDNA libraries were prepared from RNA of unstimulated peripheral blood lymphocytes from two healthy adult donors (35 and 36 yr old). In both libraries, > 85% of the plaques hybridized with a degenerate J_H oligonucleotide probe. Sequencing of randomly picked J_H -positive clones began from the 5'-end of the C_{μ} region and continued through the J_H , CDR3 and at least the FR3. Complete V region sequences were obtained in selected cases. The sequence data allowed assignment of V_H families and full analysis of D_H and J_H gene segments. All clones discussed below had unique CDR3 sequences. All but four of the sequences corresponded to functional rearrangements with open reading frames through the V_H , CDR3, and J_H segments. A total of 103 clones from the two libraries were examined.

Use of $V_{\rm H}$ gene families in the normal adult repertoire. The 54 randomly picked clones of the first normal subject (A μ) included more $V_{\rm H}1$ than $V_{\rm H}3$ family genes—28% vs. 24% (Table I). This result was surprising because the $V_{\rm H}3$ gene family has the greatest genomic complexity and was the most frequent family detected in studies of expressed $V_{\rm H}$ genes from 104- and 130-d fetal liver cells (5, 6), in adult peripheral B cells examined by in situ hybridization (19, 20), and in EBV-transformed B cells (17, 33). The higher frequency of $V_{\rm H}1$ than $V_{\rm H}3$ family genes in the $A\mu$ cDNA library was confirmed by hybridization to plaque lifts with FR3 specific oligonucleotide probes; with this assay, 35% and 25% of 400 J_H-positive clones were members of the $V_{\rm H}1$ and $V_{\rm H}3$ families, respectively.

Another notable feature of the $A\mu$ library was that the twomember V_H5 family was highly represented (Table I), occurring in 10 (19%) of the 54 sequenced clones. The high representation of this small family was confirmed in two different IgM

	Lib	rary	
V _H gene family	$\begin{array}{c} A\mu\\ (n=54) \end{array}$	Τμ (n = 49)	Germline gene complexity*
	%	%	%
1	28	25	33
2	4	4	11
3	24	49	40
4	15	17	12
5	19	6	4

0

0

1

?

Table I. V_H Gene Family Usage in $\mu cDNA$ clones

* From Berman et al. (32).

6

5

5

[‡] $V_{\rm H}$ genes with < 78% identity to members of $V_{\rm H}1$ to $V_{\rm H}6$ families.

libraries prepared from the same RNA sample. Results with the two A μ preparations are combined in Table I. 3 of the 54 A μ clones were related to the single germline V_H6 gene. The distribution of V_H gene family usage in the A μ library was at the borderline of being significantly different from that expected from the genomic complexity of the families (32) ($P \sim 0.05$).

In contrast with the Aµ library, the Tµ library was a closer reflection of the genomic complexity of V_H gene families; $V_H 3$ members were most frequent, and the $V_H 5$ family was not prominent (Table I). Statistically, the distribution of V_H gene usage in the Tµ library was not different than expected from the genomic complexity of the gene families (P > 0.05). Only 4 of the 103 IgM sequences in both cDNA libraries could be assigned to the $V_H 2$ family. The frequency of expression of genes of the $V_H 2$ family (~ 4%), which is estimated to contain five genes (34), was confirmed by plaque hybridization with a $V_H 2$ -specific FR3 oligonucleotide probe (17) (not shown). Our result is consistent with previous observations (19).

A distinct subgroup or a possible new V_H gene family. The $V_{\rm H}$ segments of three clones (Aµ4.1, Aµ92.1, and Aµ2.2) differed substantially from any known member of the $V_{H}1$ to $V_{H}6$ families. These three clones were similar to each other in the V_H segment but each used a different D gene, so they were distinct clones. Their V_H region sequences had 78% overall identity with a known $V_H 1$ gene, 20P3 (5), which was the most closely related gene among reported members of the 6 V_H gene families. Their FR1 and FR2 sequences were, in fact, 93% identical to highly conserved V_H1 gene sequences. However, they had only 67% identity with any known $V_H 1$ sequence in CDR2 and FR3 (Fig. 1). These three V_H sequences had closest overall identity (96%) with that of a previously described autoantibody with dual rheumatoid factor and anti-DNA activity, Ab47, which was considered to be a subgroup of the V_{H} family (18) (Fig. 1). PCR amplification of nonlymphoid genomic DNA was used to test whether related genes were present in the germline or whether these novel sequences may have arisen from a somatic process such as gene conversion (35). A sequence related to the three new clones was indeed found in the nonlymphoid genomic DNA of the donor for the $A\mu$ library (data not shown). One primer for this PCR was in the unique region of the FR3 and the other was in the V_H1-like FR1. This combination of primers amplified a product of appropriate size from genomic DNA. By contrast, a control combination of the

A#2.2	1 GCAACAGGTGCCCACTCCCAGGTGCAGCTGGT
Αμ4.1 Αμ92.1 Αb47 20P3	
2023	C
Αμ2.2 Αμ4.1	CCAATCTGGGTCTGAGTTGAAGAAGCCTGGGGGCCTCAGTGAAAATTTCCTGCGAGACTTCTTGATACACCTTCACTAGCTA GGGGGGG
Aµ92.1 Ab47	GA-GGGGGGG
20P3	GGGGC <u>G</u> CDR1
Αμ2.2 Αμ4.1 Αμ92.1 Αb47 20P3	TGCTATGAATTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGA
Аµ2.2 Аµ4.1	TTATGCCCAGGGCTTCACAGGACGGTTTGTCTTCTCCTTGGACACCTCTGTCAGCACGGCATATCTTCAGATCAGCAGCCT GGGG
Αμ92.1 Ab47	GGGG
20P3	<u>CAAAGTCAGC</u> AG-CAC-A-GAAGGCAACCA-GGC-GG CDR2
A#2.2	AAAGGCTGAGGACACTGCCGTGTATTACTGTGCGAGA
Aµ4.1	
Аµ92.1 Аb47	CAG AG
20P3	G-GATCGCG

Figure 1. Three novel V_H sequences in the $A\mu$ cDNA library, compared with the sequence of autoantibody Ab47 described previously by Sanz et al. (18) and the germline V_H 1 gene 20P3 (5). The $A\mu$ and $T\mu$ sequences in Figs. 1 and 2 have been submitted to Genbank, and have been assigned accession numbers M82889 to M82899.

unique FR3 primer with a V_{H3} FR1 primer did not yield an amplification product.

Expressed V_H genes in circulating B cells have mutations in CDR1 and CDR2. For several clones in which partial sequences were very similar to those of known germline V_H genes, sequencing was extended at least through the CDR1. Three clones from the $A\mu$ libraries ($A\mu$ 34.2, $A\mu$ 46.2, and $A\mu$ 51.1) differed from the single, highly conserved germline V_H6 gene by 7, 13, and 7 bases (Fig. 2 a). To ensure that these variations were indeed mutations, the germline V_H6 gene of the $A\mu$ donor was cloned and sequenced. It was identical to the published sequence of germline V_H6 . In $A\mu$ 34.2, five of the seven V_H base substitutions were in CDR2 and 2 were in FR2. The J_H segment had one difference from germline JH5; this change was in the 5'-end, which forms part of CDR3. The D_H segment could not be assigned to a known germline gene.

In A μ 46.2, seven differences from V_H6 were clustered within an 11-base segment in FR3,² The other differences were scattered, with two in FR and four in CDR sequences. The CDR3-encoding portion of its J_H gene segment differed by one base from the germline J_H4 sequence. The heavy chain variable region codons of clone A μ 46.2, therefore, contained 12 base substitutions from germline V_H and J_H gene segments; five of those differences were in CDRs. The D segment of this clone differed by three bases from a 17-base portion of a germline D_{N1} gene. The third V_H6 -related clone, $A\mu 51.1$, differed by seven bases from the germline V_H6 sequence. One difference was in CDR1, one was in CDR2, and five were in framework regions. The CDR3-encoding region of the J_H segment differed by one base from a germline J_H5 sequence. The D gene segment of $A\mu 51.1$ could not be assigned to a known germline D_H sequence.

Five clones were very closely related to either $V_H 251$ or $V_H 32$, the two functional germline members of the small and minimally polymorphic $V_H 5$ family (Fig. 2, *b* and *c*). Two clones from the Aµ library (Aµ59.1 and Aµ99.1) differed by 15 (Aµ59.1) and 5 (Aµ99.1) positions from $V_H 251$. The substitutions tended to occur in the hypervariable regions; 10 of the 20 substitutions in these two clones were in either the CDR1 or CDR2. The D segment of Aµ59.1 could not be assigned, but that of Aµ99.1 had a six-base sequence identical to part of D_{Q52}. Clone Aµ2.1 in the Aµ library differed at one position (in CDR2) from $V_H 32$, had an unassignable D segment, and had a J_H segment differing by one base in the CDR3-encoding portion from J_H1 (Fig. 2 *c*).

There were fewer differences from $V_H 5$ germline genes among the T_{μ} library clones. One clone in this library, $T_{\mu}16$, differed by a single base from $V_H 251$. Its D segment differed by two bases from a 15-base portion of the $D_{XP'1}$ sequence. It had only one "N" base, at the $D_H J$ junction, and it had an unmutated $J_H 2$ gene. A second T_{μ} clone, $T_{\mu}0$, differed from $V_H 251$ at four positions (one in CDR1). Its CDR3 had an 11-base sequence identical to a portion of $D_{XP'1}$, and its $J_H 6$ sequence had one base change, which was in the CDR3-encoding portion of the gene.

cDNA of gene $V_{H}26$ (also termed $V_{H}18/2$ and 30P1 [36]) was represented in two clones selected at random for sequenc-

^{2.} The clustering suggested that these differences may have arisen from a hybridization artifact that can arise when related genes are present (see reference 75). However, the 11-base pair segment involved was not closer to any other V_H family, and the rest of the V_H structure, on both sides of the cluster, had a sequence characteristic of $V_H 6$.

							·																						
															-														
			G	v	T	s	0	v	0	T	0	0	s	G	P	G	Т	v	ĸ	p	s	0	т	T.	s	T.	т	с	
			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
			-	-	-	-	-	-	-	-	-	-	-	-	-	- R	-	-	-	-	-	-	-	-	-	-	-	-	
														~~~	~ ~ ~				000				000		~				~~
rc:		:GG					CTAG													C-		-G							
							(	-																					
							(																						
1	5	G -	D	s -	V -	S	S	N _	s -	A _	A _	W _	N -	W _	I	R -	Q	s -	P -	S P	R -	G -	L _	E	W _	L _	G -	R -	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	Ţ	-	- CI	- 0R1	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	C
_																										<i>.</i>	~~ .	~-	
					_		ATAA T									-													
	-								-C						T							[T							
		-G-																											
1	Y -	R	S	ĸ	W	YF	N	D G	Y	A _	V -	s	v	K E	S G	R	ī	T	I	N	P _	D -	T	s -	ĸ	N _	Q	F	
	H	-	-	-	-	-	-	-	-	-	-	-	-	N	-	-	-	I	-	-	v	-	-	-	-	-	-	-	
	-	G	-	-	-	- CD	- P2	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	
																									_				
iG 																				N		GGG	GAGA		D IGGC	CTAC	A		N
																			G/	ATCO		T/	ATAG	<b>SCA</b> t	CAa	agTC	<del>G</del>	_	
				:	[														-		GAC	GCC	GGG		GCC DR3	CACA	ACAC	<u>;</u>	
(	Q	L	N	S	V	Ť	P	E	D	T	A	V	Y	Y	С	A	R												
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-												
	-		-	F	-	-	-	-	-	-	-	-	-	-	_														
	-	-		-											-	-	-												
	-	-	J	- 1 ₈											-	-	-												
Ŧ			GAC	TC			GCC	-																					
	AC ( GG 1	gTT FTC	GAC GAC	CTC CTc	C TO	GGG	GCC/ GCC/ GCC1	AgGO	GAA	CCC.	IGG	CAC	CG	CTC	CTC	A	(J _H 4	)											
	AC GG1 (	gTT	GAC GAC	CTC CTc	C TO	GGG	GCC/	AgGO	GAA	CCC.	IGG	CAC	CG	CTC	CTC	A	(J _H 4	)											
<u>ст</u>	AC <u>GG1</u> (	g TT <u>TTC</u> CDR	GAC GAC GAC	CTCC CTcC CcCC	C T( <u>C</u> T(	GGG GGG	GCC/ GCC1	AgG( tgG(	GAA( GAA(		rgg: rgg:	ICAC ICAC	CG1 CG1	ICTO ICTO	CTC	A (	(J _H 4 (J _H 5	)	CCG	GGG	AGT	CTC	TGA	GGA	TCT	CCT	GTA	AGG	i
<u>ст</u>	AC <u>GG1</u> (	g TT <u>TTC</u> CDR	GAC GAC GAC	CTCC CTcC CcCC	C T( <u>C</u> T(	GGG GGG	GCC/	AgG( tgG(	GAA( GAA(		rgg: rgg:	ICAC ICAC	CG1 CG1	ICTO ICTO	CTC	A (	(J _H 4 (J _H 5	)	CCG	GGG/	AGT	CTC	TGA	GGA	TCT	CCT	GTA	AGG	i.
CT	AC <u>GG</u> ( 1 GG	BTT CDR	GAC GAC GAC 3	GTG		GGG GGG AAG	GCC/ GCC1	AgGC	GAAG GAAG	TGC	IGG: IGG: AGT		GAG		AGGI	GA	(J _H 4 (J _H 5 <b>AAA</b> /	AGC			•••								
CT	AC <u>GG</u> ( 1 GG	BTT CDR	GAC GAC GAC 3	GTG		GGG GGG AAG	GCC/ GCC1	AgGC	GAAG GAAG	TGC	IGG: IGG: AGT		GAG		AGGI	GA	(J _H 4 (J _H 5 <b>AAA</b> /	AGC			•••								
CT	AC ( <u>GG</u> ) ( 1 GG  G	sTT <u>TTC</u> CDR AGT  V 	GA( GA( <u>GA(</u> 3 	GTG CAG		3GG 3GG AAG  V -	GCC/ GCC1 TGC/ TGC/ CAG	AGC AGC L CTA	GAAG GAAG TGG  V -		IGG' IGG' AGT S 	CCG CCG G CCG	GAG		AGGI V -	(A ) (A ) (GA) (GA) (GA) (GA)	(J _H 4 (J _H 5 AAAA  K 	AGC P 	 G - GAA	E - AGG	S  -	L GGA	R - GTG	I - G <u>AT</u> (	s - -	C - GAG	 к	 G -	
CT	AC ( <u>GG</u> ) ( 1 GG  G	sTT <u>TTC</u> CDR AGT  V 	GA( GA( <u>GA(</u> 3 	GTG CAG		3GG 3GG AAG  V -	GCC/ GCC1 TGC/	AGC AGC L CTA	GAAG GAAG TGG  V -		IGG' IGG' AGT S 	CCG CCG G CCG	GAG		AGGI V -	(A ) (A ) (GA) (GA) (GA) (GA)	(J _H 4 (J _H 5 AAAA  K 	AGC P 	 G - GAA	E - AGG	S  -	L GGA	R - GTG	I - G <u>AT</u> (	s - -	C - GAG	 к	 G -	
<u>CT</u>	AC ( <u>GG</u> ) ( 1 GG  G	sTT <u>TTC</u> CDR AGT  V 	GA( GA( <u>GA(</u> 3 	GTG CAG		3GG 3GG AAG  T <u>AC</u> 	GCC/ GCC1 TGC/ TGC/ CAG	AGC AGC L CTA	GAAG GAAG TGG V  V 		IGG' IGG' AGT S 	CCG CCG G CCG	GAG	CAG/ E GCGG	CCAC	(A ) (A ) (GA) (GA) (GA) (GA)	(J _H 4 (J _H 5 <b>AAA</b>  K  GCCC	•) •) •) • • • • • • •	 GAA	E - AGG	S - CCT	L 	R - GTG	I 	S - <u>GGG</u>	GAG	 к	 G -	
<u>CT</u>	AC ( <u>GG</u> ) ( 1 GG  G	sTT <u>TTC</u> CDR AGT  V 	GA( GA( <u>GA(</u> 3 	GTG CAG		3GG 3GG AAG  T <u>AC</u> 	GCC/ GCC1 TGC/ CAG	AgGC AGC L CTA	GAAC GAAC TGG  V  V  V		IGG' IGG' AGT S 	CCGG	GAG	CAG/ E GCGG	CCAC	GA GA K 	(J _H 4 (J _H 5 <b>AAA</b>  K  GCCC	•) •) •) • • • • • • •	 GAA	E - AGG	S - CCT	L 	R 	I 	S  G 	GAG	GAT I	 G -	
TT 	AC ₄ <u>GG</u> 1 GG  G 	sTT TTC CDR AGT  GGA 	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	GTG GTG CAG S	E TO CCG	3GG 3GG AAG 	GCC/ GCC1 TGC/ C C C	AgGC AGC L CTAI Y DR1	3AA( 3AA( 1GG  V  V  V 	CCC: CCC: TGC - GAT I -	AGT	CCGG	GAG	CAG/ E GCG	CCAC	A ( A ( A ( A ( A ( A ( A ( A ( A ( A (	(J _H 4 (J _H 5 <b>AAAA</b> )  K  GCC(  P -	•) •) •) • • • • • • • • •	GAA GAA K	E - AGG G -	S - CCT - L -	L  E -	R - GTGI  W -	I  M 	S  G 	C GAG R  R 	GAT I 2	 G  T <u>GA</u> 	
	AC ₄ <u>GG</u> 1 GG - CT -	STT TTC CDR AGT V - GGA G -	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	GTG GTG CAG S CTT	CCCG. CCCG. CCCG. CCTT F -	3GG 3GG AAG  V  T <u></u> T <u></u> T <u></u>	GCC/ GCC1 TGC/ CAG	AgGC AGC L CTA  Y  DR1 ACA	3AAQ 3AAQ TGGG  V  V  V 	CCC: CCC: TGC GAT I - CGT	IGG' IGG' AGT 	CCCG CCCG CCCG CCCG CCCG CCCG CCCG CCC	CCGT CCGT GAG GGT V  V 		CCAC CCAC	A ( A ( A ( A ( A ( A ( A ( A ( A ( A (	(J _H 4 (J _H 5 (J _H 5) (J _H 5 (J _H 5) (J _H 5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5) (J_H5)	•) •) •) • • • • • • • • •	GAA GAA K	E - AGG G -	S - CCT - - L -	L  E -	R - GTGI  W -	I  M 	S  G 	C GAG R  R 	GAT I 2	 G  T <u>GA</u> 	
TT 	AC	STT TTC CDR AGT V 	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	GTGC CCCC GTGC CCCC A CAG S CAG CTT	CCCG. CCCG. E  F  F 	3GG 3GG AAG  V  T <u></u>	GCC/ GCC1 TGC C C C ACT	AgGC  L  CTAI  Y  DR1 ACA	3AAC 3AAC  V  <u>V</u>  <u>W</u> 	CCC: TGC. TGC.  Q   Q    Q      	rgg: rgg: rgg: Agt 	CCGG CCGG CCGG CCGG CCGG CCGG CCGG CCG	GAG GAG GAG GGT  V  V 		AGG1 V CCA0 	A ( A ( GA) K GAT M	(J _H 4 (J _H 5 AAAA/  K  GCCC 	AGC P  CGGG G 	GAA GAA K - CAG	E - AGGG - - CTG	S - CCTI - - -	L - GGA( - -	R GTG( W -	I  M 	S  G  G GCA	C GAG R CDR CTG	K - GAT I - 2 CCT	G - TGA D - ACC	
TT 	AC	STT TTC CDR AGT V 	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	GTGC CCCC GTGC CCCC A CAG S CAG CTT	CCCG. CCCG. E  F  F 	3GG 3GG AAG  V  T <u></u>	GCC/ GCC1 TGC/ CAG	AgGC  L  CTAI  Y  DR1 ACA	3AAC 3AAC  V  CTG  W 	CCC: TGC. TGC.  Q   Q    Q    Q      	rgg: rgg: rgg: Agt 	CCGG CCGG CCGG CCGG CCGG CCGG CCGG CCG	GAG GAG GAG GGT  V  V 		AGGI V CCAO Q -	A ( A ( GA) K GAT M	(J _H 4 (J _H 5 AAAA/  K  GCCC 	AGC P  CGGG G 	GAA GAA K - CAG	E - AGGG - - CTG	S - CCTI - - -	L - GGA( - -	R - GTGI  W -	I  M 	S  G 	C GAG R CDR CTG	GAT I 2	G - TGA D - ACC	<u>т</u>
	AC	STT TTC CDR AGT V 	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	GTGC CCCC GTGC CCCC A CAG S CAG CTT	2 TC 2 TC 2 TC 2 TC 2 TC 2 TC 2 TC 2 TC	3GG 3GG AAG  V  T <u></u>	GCC/ GCC1 TGC/ C C C C C C C C	AgGC  L  Y  DR1 ACA	3AAC 3AAC  V  CTG  W 	CCC: TGC. TGC.  Q   Q    Q    Q      	rgg: rgg: rgg: Agt 	CCGG CCGG CCGG CCGG CCGG CCGG CCGG CCG	GAG GAG GAG GGT  V  V 		AGGI V CCAO Q -	A ( A ( GA) K GAT M	(J _H 4 (J _H 5 AAAA/  K  GCCC 	AGC P  CGGG G 	GAA GAA K - CAG	E - AGGG - - CTG	S - CCTI - - -	L - GGA( - -	R GTG( W -	I  M 	S  G  G GCA	C GAG R CDR CTG	K - GAT I - 2 CCT	G - TGA D - ACC	
	AC ₄ GGT GG G G G G G C T C T C T C T C T C	STT TCCDR AGT  GGA  GGA  GGA	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	GTG GTG CAG CAG CAG CAG		3GG 3GG 3GG  V  T  T  T  T  T  T  T 	GCC/ GCC1 TGC/ C C C C C C C C C C C C C C C C C C	AgGC   Y              	3AAC 3AAC 3AAC 7GG 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	RGG' RGG' AGT S 	CCG0 CCG0  G CTG0  W  Q  ATG	CCG7 CCG7 CCG7 A GGT  GGT  GGT  C C C C C C C C C C C C C C C C C		AGG1 V 	A ( A ( A ( A ( A ( A ( A ( A ( A ( A (	(J _H 4 (J _H 5 (J _H 5 (J _H 5 (CCA)  P  I  I  AGA	AGC P  G  S  S	GAA GAA K  K  A  N	E  G  CTG  D 	S  L  K  K	L GGGA( E - S - S	R - GTG(  W - CCA' I  I -	I G <u>ATI</u> M 	S - - - - - - - - - - - - - - - - - - -	C GAG R C CDR CTG A -	<u>GAT</u> <u>I</u> 2 ССТ/  Ү	G  D  ACCC 	<u>т</u>
<u>CT</u> GTT <u>CC1</u>	AC ₄ GGT GG G G G G G C T C T C T C T C T C	STT TCCDR AGT  GGA  GGA  GGA	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	GTG GTG CAG CAG CAG CAG		3GG 3GG 3GG  V  T  T  T  T  T  T  T 	GCC/ GCC1 TGC/ CCAG S - CCAG C CAG C C C C C C C C C C C C C C	AgGC   Y              	3AAC 3AAC 3AAC 7GG 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	RGG' RGG' AGT S 	CCG0 CCG0  G CTG0  W  Q  ATG	CCG7 CCG7 CCG7 A GGT  GGT  GGT  C C C C C C C C C C C C C C C C C		CCA( 	A ( A ( A ( A ( A ( A ( A ( A ( A ( A (	(J _H 4 (J _H 5 (J _H 5 (J _H 5 (CCA)  P  I  I  AGA	AGC P  G  S  S	GAA GAA K  K  A  N	E  G  CTG  D 	S  CCTI  ACA.  K  K	E  E  S  S  S	R - GTG(  W - CCA' I  I -	I G <u>ATI</u> M 	S - - - - - - - - - - - - - - - - - - -	C GAG R C CDR CTG A -	<u>GAT</u> <u>I</u> 2 ССТ/  Ү	G  D  ACCC 	<u>т</u>
	AC ₆ GGT GG GG CTT CTT CTT CTT CTT CTT CTT C	GGA	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	GTGC CAG CAG CAG CAG CAG		3GG 3GG 3GG T <u>AC</u> T <u>CCA</u> T <u>CCA</u> AAG	GCC/ GCC1 TGC/ C C C C C C C C C C C C C C C C C C	AgGC 	3AAC 3AAC 3AAC  V  V  <u>V</u>  <u>CTG</u>  <u>P</u> <u>L</u> GAC	GAT GAT I CGT T	IGG:   IGG:   IGG:   S   CAG   S   CAG   S   GCCT   GCCC	CCGG G CCGG CCGG CCGG CCGG CCGG CCGG C	CG31 CG31 CG31 CG31 A GG4 C GG4 C C C GG4 C C C G G G C C G C G		CCA( 	A CA	(J _H 4 (J _H 5 (J _H 5 (J _H 5 (CCA)  P  CCA  I  AGA	AGC P  G  S  S	GAA GAA K  K  A  N	E  G  CTG  D 	S  L  K  K	E  E  S  S  S	R - GTG(  W - CCA' I  I -	I G <u>ATI</u> M 	S - - - - - - - - - - - - - - - - - - -	C GAG R C CDR CTG A -	<u>GAT</u> <u>I</u> 2 ССТ/  Ү	G  D  ACCC 	<u>т</u>
	AC ₆ GGT GG GG CTT CTT CTT CTT CTT CTT CTT C	GGA	GAC GAC GAC GAC GAC GAC GAC GAC GAC GAC	GTGC CAG CAG CAG CAG CAG		3GG 3GG 3GG T <u>AC</u> T <u>CCA</u> T <u>CCA</u> AAG	GCC/ GCC1 TGC/ C C CAG C C C C C C C C C C C C C C C C	AgGC 	3AAC 3AAC 3AAC  V  V  <u>V</u>  <u>CTG</u>  <u>P</u> <u>L</u> GAC	GAT GAT I CGT T	IGG:   IGG:   IGG:   S   CAG   S   CAG   S   GCCT   GCCC	CCGG G CCGG CCGG CCGG CCGG CCGG CCGG C	CG31 CG31 CG31 CG31 A GG4 C GG4 C C C GG4 C C C G G G C C G C G		CCA( 	A ( A ( A ( A ( A ( A ( A ( A ( A ( A (	(J _H 4 (J _H 5 (J _H 5 (J _H 5 (CCA)  P  CCA  I  AGA	AGC P  G  S  S	GAA GAA K  K  A  N	E  G  CTG  D 	S  CCTI  ACA.  K  K	E  E  S  S  S	R - GTG(  W - CCA' I  I -	I G <u>ATI</u> M 	S - - - - - - - - - - - - - - - - - - -	C GAG R C CDR CTG A -	<u>GAT</u> <u>I</u> 2 ССТ/  Ү	G  D  ACCC 	

Figure 2. The heavy chain variable region cDNA sequences of clones in the  $A\mu$  and  $T\mu$  libraries containing  $V_H$  segments related to (a) the single germline  $V_H6$  gene, (b, opposite page) the germline  $V_H5$  family gene  $V_H251$ , and (c) the germline  $V_H5$  family gene  $V_H32$ .

	1 GG	AGI	СТ	GTO	SCC	GAG	GT	GC/	٩GC	TGG	TGC	CAG	TCT	GGA	GCA	GAC	GTO	AAA	AAC	1000	GGG	GAG	тст	сто	GAAG	ATC	TC	CTGI	AA	GGG	TTC	TGC	<b>SAT</b>	ACA	\GC	TTT	ACCAG
μ59.1 μ99.1							•••									•••									G		• • •		• • •	(			• • •				-G(
Γμ16 Γμ0					-											• • •		• • • •								• • • •								-	• • •		/
/ _# 251 λμ59.1 λμ99.1 Γμ16 Γμ0	G	v	C	,	N	E - -	v -	9 - -	L	• •		- -	s - -	G - -	• -	E - -	v - -	к - -	K -	P - -	G   -	E - -	s - -	L - -	K R -	I - -	s - -	с - -	к -	G A -	s - -	G - -	Y -	· · ·	- - -	F - - -	T S S T - T - N
/ _# 251 Αμ59.1 Αμ99.1 Γμ16 Γμ0	<u>C1</u>	<u>AC1</u>	<u>GG</u>	<u>AT(</u>	<u>C</u> GC (		1	·				  				 	  	/ /	NC-			- G -	-C-	·	C						AC						CDR1 <u>CCAA</u> -G
ν _μ 251 Αμ59.1 Αμ99.1 Γμ16	١	/ I - -	/ - -	I - -	G - A -	W - - -	V L	'   -	R - -	Q - -	M - - -	P - -				L	F	U	M	G - - -	1	I		Ρ	G	D	s - -	D - -	T - -	R	Y	' ( - -	S - -	P - -	S - - -	F - -	Q - E -
ΤμΟ V _H 251 Aμ59.1 Aμ99.1	_		AGG			- T -																					GGA	CAC				-r-	τ				
τμ16 τμ0	-	•••							• • •																			A									-
	-		-C·																				·/	۹				A									
V _H 251 Aμ59.1 Aμ99.1 Tμ16 Tμ0	- G - - -	Q 	- C - V				s - - -	A - V -			• • •						 Y	 L	 Q		s	s		•	A - - -		D - - -	A T - N N									
Αμ59.1 Αμ99.1 Τμ16	- - - T	Q - - H H TTG <u>TTT</u>		ACT	 T - -	I F - -	S - - - -	A - - - - - - - - - - - - - - - - - - -	GCC GCC TA		GCC GCC GCC GCC GCC	S - - - - - - - - - - - - - - - - - - -	I - - - - -	s - -	T - -	A - -	Y - - N C G	 L	 Q	U - - - - (D)	s	s - - -		•				T A - N N									



ing. It was identified by hybridization of membrane lifts with CDR1 and CDR2 oligonucleotide probes. Two clones isolated on this basis differed by one and three bases from the  $V_{\rm H}18/2$  gene (not shown);  $V_{\rm H}18/2$  is a highly conserved gene (36).

Biased use and diversity of the  $J_H4$  gene. The  $J_H4$  gene was overrepresented in the cDNA libraries of both subjects. It occurred in 48% of all sequenced clones (Fig. 3). Use of other  $J_H$ genes differed in the two subjects. For example,  $J_H5$  occurred in 24% of the  $A\mu$  sequences and 13% of the  $T\mu$  sequences. The  $J_H1$ and  $J_H2$  families were present infrequently, an observation also made by others (19, 21).

Considerable diversity was found in the 5' end of the 49 sequenced  $J_H4$  gene segments (Fig. 4). This region of the gene contributes to the CDR3 of the heavy chain. The diversity arose both from variation in the point of  $J_H4$  joining to the rest of the CDR3 and from nucleotide differences from the germ-

line sequence. Apart from a previously recognized polymorphic G/A variation (37), 15/28 A $\mu$  clones and 11/21 T $\mu$  clones contained substitutions in J_H4, ranging from one to three in number, that cannot be accounted for by polymorphism. Most (81%) of the substitutions were clustered in the CDR3-coding region of the gene and most led to amino acid substitutions (Fig. 4 *b*).

Heterogeneity of  $D_H$  regions. The  $D_H$  segment sequences in both libraries were highly diverse (Figs. 5-7). Parts of some CDR3 sequences, ranging in length from 6 to 26 bases, were identical to portions of known germline  $D_H$  gene segments; such germline sequences were found in 10/54 A $\mu$  clones (18%) and in 16/49 T $\mu$  clones (30%). The  $D_H$  region sequences of 12 other A $\mu$  clones (21%) and 9 other T $\mu$  clones (19%), from 15 to 29 bases long, had only one or two differences from germline  $D_H$  genes. The remaining 56 clones had more substantial differ-

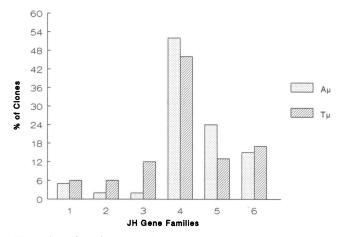



Figure 3. Preferential usage of  $J_H4$  genes in the 54 A $\mu$  and 49 T $\mu$  clones of the cDNA libraries.  $J_H$  gene use was assigned on the basis of the complete  $J_H$  sequence for each clone.

ences from known germline  $D_H$  sequences (Fig. 5 *a*). 21 (Fig. 6) were not assigned to known  $D_H$  genes because they had either no identifiable sequence identity or, in some cases, because they had < 75% identity with a known  $D_H$  gene.

Direct comparisons between observed and germline sequences were possible with the  $D_{LR}$  and  $D_{XP}$  families, for which the expected germline members are known (38, 39), and with the single  $D_{Q52}$  gene (40). The majority of the expressed members of these families in both  $C\mu$  libraries contained differences, ranging from one to five bases, from germline sequences (Fig. 5). All assignable clones used only part of the germline  $D_H$ gene segments, and N insertions were observed in all of them (Figs. 5 and 7). The average length of N at the  $V_H$ - $D_H$  junctions was 5.7 and at the  $D_H$ - $J_H$  junctions was 4.7 bases. Among clones with long N regions, eight CDR3 sequences might be accounted for by D-D or D-DIR fusion (Fig. 7).

 $D_H$  gene usage was not random. In the combined libraries, the  $D_{LR}$  and  $D_{XP}$  gene families were used with high frequency; these two families accounted for 54% of the assignable clones (44% of all clones). Sequences related to the  $D_{LR}^2$  gene alone were present in 11 clones; sequences related to  $D_K^4$  and  $D_N^1$ also occurred at high frequency (Fig. 5). The  $D_{Q52}$  gene segment, which is overrepresented in human fetal liver (5), was present only once in the  $A\mu$  library and twice in the  $T\mu$  library.

#### Discussion

The sampling procedure. We have used a sensitive cDNA/PCR cloning method to examine usage of Ig heavy chain variable region genes in peripheral blood B cells of two normal adult donors. The procedure uses no variable region primers and, therefore, does not itself bias the V gene sampling (29). Moreover, since the lymphocytes were not stimulated in vitro, the results provide an insight into the V gene repertoire of circulating B cells in their native state at the time blood is drawn.

We do not know whether all B cells synthesize enough mRNA for a cell to be scored in this analysis. In humans, many of the circulating human B cells appear to be resting cells. Only 0.1–1% of peripheral blood mononuclear cells synthesize

mRNA at levels that can be detected by *in situ* hybridization (19, 41). PCR has a high sensitivity and probably samples a larger population than is detected by in situ hybridization.

The inherent error in PCR-based sequencing. The total number of nucleotides in the fully sequenced  $J_H4$ ,  $V_H5$ , and  $V_H6$  genes was 4,065, among which there were 96 differences from germline sequences, for a rate of ~ 24 bases per 1,000 (4  $\times 10^{-4}$  per nucleotide incorporated in the two PCR steps of 30 cycles each). That frequency of base substitutions is much higher than the error rate of the PCR technique, which is ~ 5  $\times 10^{-5}$  per nucleotide incorporated, both in the reported experience of others (25, 42, 43) and in our own experience. For example, several clones in different libraries from one individual that we studied had identical CDR3 sequences and were probably multiple copies of a single cDNA. The substitution frequency among those sequences was ~ 1/300 bases (2  $\times 10^{-5}$  per nucleotide incorporated), a level at which PCR error could not be distinguished from clonal divergence.

 $V_H$  gene family usage. Previous studies of  $V_H$  gene family usage by circulating B cells from human adults, carried out by in situ hybridization with  $V_H$  family-specific oligonucleotide probes, have drawn different conclusions, perhaps because of variations in technique and in sampling procedures. In the experiments of Guigou et al. (19), there were differences among individuals, but an average pattern of  $V_H$  gene family expression by unstimulated cells could be defined.  $V_H3$  family genes were the most frequently expressed, and  $V_H$  gene family usage correlated roughly with their genomic complexity. Zouali and Thèze (20) averaged results of protein A-stimulated B cells from eight adults. They observed that the  $V_H$  gene families were not represented in a random way; the  $V_H1$  family was under-represented, whereas the  $V_H3$  family was overrepresented relative to genomic complexity.

The results of our study emphasize that there are indeed differences among single samples from different normal individuals, as Guigou et al. (19) found. In the cDNA library of one subject (A $\mu$ ), a nonrandom representation was seen, with disproportionate representation of V_H5, and fewer than expected V_H3 gene family members. The A $\mu$  library, which also contained 3 V_H6 members, resembles, in its overall composition, a fetal C $\mu$  library (5, 6). Further study will be required to determine whether that pattern is stable for the donor of the A $\mu$ lymphocytes. It is possible that the nonrandom V_H distribution in this library reflects an unknown, recent immunizing stimulus. V_H gene usage in the cDNA library from the T $\mu$  donor, by contrast, more closely paralleled the genomic complexity of the families; however, that single library does not exclude a continuously changing pattern of V_H gene usage.

The three novel sequences, with FR1 and FR2 sequences characteristic of  $V_{H1}$  genes and unique CDR2 and FR3 sequences, along with Ab47 (18), may represent a distinct subgroup of the  $V_{H1}$  family, as suggested by Sanz et al. (18), or a new  $V_{H}$  gene family. A closely related combination of sequences exists in the germline DNA, as shown by PCR amplification. This subset of genes may have arisen from a gene conversion or recombination in evolutionary time rather than as a somatic event. The clones in this group have 78% overall sequence identity with the mouse immunoglobulin gene  $V_{H9}$ .

The normal  $V_H$  gene repertoire contains genes used by fetuses and for autoantibodies. Table II summarizes the findings in seven clones (sequenced at least from CDR1 to the end of FR3) with 97% or more identity to members of the set of  $V_H$ 

0	CDR3		Ъ		С	DR3												
a			JH4	TA	CTT	TGA	CTAC	TG	GGGC	CAJ	GGI	AAC	CCT	GGT	CAC	CGT	CTC	CTCA
JH4	TACTTTGACTAC	TGGGGCCAAGGAACCCTGGTCACCGTCTCCTCA		Y	F	D	Y	W	G	Q	G	Т	L	v	Т	v	S	S
Αμ4.1		GG	Αμ4.1		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ49.1	GG	_	Αμ49.1		-	-	W	-	-	-	-	-	-	-	-	-	-	-
Αμ52.1		GGG	Αμ52.1				-	-	-	-	-	-	-	-	-	-	-	-
Αμ59.1	G	-	Αμ59.1		-	-	W	-	-	-	-	-	-	-	-	-	-	-
Αμ61.1	T-	GG	Aµ61.1		-	-	F	-	-	-	-	-	-	-	-	-	-	-
Αμ70.1	T-	GG	Αμ70.1			-	F	-	-	-	-	-	-	-	-	-	-	-
Αμ90.1	C-	GGG	Αμ90.1		-	-	н	-	-	-	-	S	-	-	-	-	-	-
Αμ92.1		GG	Αμ92.1		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ94.1		GG	Αμ94.1		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ95.1	G-G	-	Αμ95.1		L	G	-	-	-	-	-	-	-	-	-	-	-	-
Αμ96.1	-A		Αμ96.1		Y	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ100.1		1	Αμ100.1	1	-	-	-	-	-	-	-	A	-	-	-	-	-	-
Αμ2.2		GG	Αμ2.2				-	-	-	-	-	-	-	-	-	-	-	-
Αμ29.2		GG	Αμ29.2		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ3.2		GG	Αμ3.2			-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ31.2			Αμ31.2		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ37.2	-C-G	-	Αμ37.2	D	v	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ39.2		9	Αμ39.2		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ4.2		GG	Αμ4.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ40.2	-c		Αμ40.2		L	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ42.2	A		Αμ42.2	-	Y	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ44.2	A	-	Αμ44.2		L	Е	-	-	-	-	-	-	-	-	-	-	-	-
Αμ45.2	-c	-	Αμ45.2		L	-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ46.2	C-	-	Αμ46.2	-	v	-	S	-	-	-	-	-	-	-	-	-	-	-
Αμ47.2			Αμ47.2			-	-	-	-	-	-	-	-	-	-	-	-	-
Αμ52.2		GG	Αμ52.2				-	-	-	-	-	-	-	-	-	-	-	-
Αμ6.2	GG	-	Аµ6.2	-	-	-	W	-	-	-	-	-	-	-	-	-	-	-
Αμ8.2			Αμ8.2			-	-	-	-	-	-	-	-	-	-	-	-	-
Τμ5		GGG	Τμ5			-	-	-	-	-	-	-	-	-	-	-	-	-
Τμ10		3	<b>Τμ10</b>		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Τμ17			Τμ17		-	-	-	-	-	-	-	A	-	-	-	-	-	-
Τμ19	GT-		Τμ19		-	G	F	-	-	-	-	-	-	-	-	-	-	-
Τμ20			Τμ20			-	-	-	-	-	-	-	-	-	-	-	-	-
Τμ21		3	Τμ21		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Τμ22	A-GG		Τμ22		L	G	-	-	-	-	-	-	-	-	-	-	-	-
<b>Τμ23</b>		GG	Τμ23		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Τμ24			Τμ24				-	-	-	-	-	-	-	-	-	-	-	-
Τμ29		GGG	Τμ29			-	-	-	-	-	-	-	-	-	-	-	-	-
Τμ41	GA	GGG	Τμ41	-	D	D	-	-	-	-	-	-	-	-	-	-	-	-
Τμ42		GG	Τμ42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Τμ61		GAA	Τμ61			-	-	-	-	-	-	-	Q	-	-	-	-	-
Τμ74		GGG	Τμ74				-	-	-	-	-	-	-	-	-	-	-	-
Tμ75	T	GG	<b>Τ</b> μ75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<b>Τ</b> μ76		GAA	<b>Τ</b> μ76			-	-	-	-	-	-	-	-	I	-	-	-	-
Τμ84		GG	Τµ84				-	-	-	-	-	-	-	-	-	-	-	-
Τμ87	CT-	GG	Τμ87	1	-	-	L	-	-	-	-	-	-	-	-	-	-	-
Τμ90	A	TTT	Τμ90		I	-	-	-	-	-	-	S	-	-	-	-	-	-
Τμ98	c	G	Τμ98			-	н	-	-	-	-	-	-	-	-	-	-	-
Τμ100	CG	G	<b>Τμ100</b>	-	L	G	-	-	-	-	-	-	-	-	-	-	-	-
	L		•	L														

Figure 4. (a)  $J_H4$ -related base sequences in clones of the  $A\mu$  and  $T\mu$  cDNA libraries. Most differences from the germline  $J_H4$  gene occur in the portion that contributes to CDR3. (b) Translated amino acid sequences of  $J_H4$ -related segments of cDNA clones. Most of the base substitutions in the CDR3 portion lead to amino acid substitutions.

genes, such as 58P2, that has been a feature of the immunoglobulin V gene repertoire of fetal B cells. Five of the seven  $V_H$ genes represented in these clones are known to be used to form autoantibodies such as rheumatoid factor, cold agglutinins, and anti-DNA and anti-cardiolipin antibodies ( $V_H251, 21/28$ , FL2-2,  $V_H6$ , and  $V_H32$  (37). To those we can add the three genes closely related to Ab47, a rheumatoid factor/anti-DNA antibody. VH genes with one and three base differences from the germline  $V_H26$ , used in anti-DNA autoantibodies, were also identified in the  $A\mu$  library.

B cells capable of forming such autoantibodies are highly represented among human-human hybridomas (36), EBVtransformed cells (13, 14, 44), and B-cell malignancies (11, 12). Many of them, like those listed in Table II, use  $V_H$  genes that are also expressed by fetal B cells, with few or no mutations from the germline  $V_H$ ,  $D_H$ , or  $J_H$  components. These results are compatible with the conclusion, drawn from studies of EBVtransformed B cells, that cDNAs associated with IgM autoantibodies are highly represented in the normal B cell repertoire (44). Some such immunoglobulins, encoded by  $V_H$  genes with few mutations, may bind to both autoantigens and foreign antigens such as bacterial polysaccharides (45, 46).

Evidence that circulating B cells have undergone selection. Several lines of evidence, when taken together, strongly suggest that many IgM⁺ B cells in the circulating blood are not naive, but instead have undergone selection and clonal expansion. Four aspects of our results support that conclusion: overrepresentation of V region gene families, or of individual V region gene segments; somatic mutation of V genes; the high frequency of replacement substitutions compared to silent muta-

0	x	D	H	
a		D _A 1	*	
A#106.1	GACCCCCCCA	TGACTACAGTAACTAC G-CG	TTGGAG	
Aµ100.1	T	T-G	GCC	
Aµ37.2	ACGAGTTT	GG	GTTACTTCCG	
Tμ17 Tμ02	ACCCGCTACGG		тт	
Тµ92	ACACCAGAGA		11	
T#41.2	GATTT	D _K 1 GTGGATATAGTGGCTACGATTAC CA		
A( D		D _K 4 GTGGATACAGCTATGGTTAC		
Αμ4.2 Αμ35.2	TGTAT ATATT	AAT-	CCC	
Aµ51.2	ATATTGA	CAT-	CC	
τμ10	CGAGAGATCT	TG	GAGCTACATTTT	
Tµ12	TAA	•••••		
Τμ13 Τμ56	GATACTGAG TGTCCG		CATGAT 1	
Τμ84			C	
·		D <mark>m</mark> 1 Ggtataactggaactac		
Aµ29.2	GGCAAGTC	A	CTGGTCT ²	
Αμ103.1 Τμ75	TTCGGGCC G <b>a</b>	CC-	TGGGGT TAGACGGATCCTAC	
1415	GA		TAGACGGATCCTAC	
A		D _M 2 GGTATAACCGGAACCAC	TGCCCCCATC 4	
πμ47.2/Γ Τμ24	GCCCGCCTAT		GGTA	
τμ59	ACCGGT	-CC	TGAT	
		D _M 5 GGTATAACTGGAACAAC		
τμ82	GGTTTAG	G	TTTAC	
A#37.1	GAAGGTGG	D _N 1 GGGTATAGCAGCAGCTGGTAC	TCGGAGT	
Aμ81.1	GGG	TG-GAC	TT	
Aµ85.1	TTGGTG	•••••	AAAC	
Αμ94.1	GCGCCC	C		Figure 5. (a and b) Relation-
А#31.2 А#46.2	TCCCAAATCC Gatcca	 TAG	CT	ship of CDR3 base sequences
Τμ20	ATAACG		G	of clones in the A $\mu$ and T $\mu$
τμ47	CACG		TTCAGT	cDNA libraries to known
		D _N 4		germline $D_H$ genes. Numeri- cally annotated clones: 1, T $\mu$ 56
		GAGTATAGCAGCTCGTCC		may be assigned equally well
Aµ98.1	GG	C	TCG	to $D_{K}4$ , $D_{K}1$ , or $D_{K}5$ ; 2, clone
A#32.2	GTTCCGACCCGAAAAGGCAAACC	-C	AGGAGTCC	$A\mu 29.2$ may be assigned
Тµ4	GGAGG			equally well to $D_M 1$ or $D_M 5$ ; 3,
		D _{in} 2		clone $A\mu 103.1$ may be as-
		AGCCTCCGGAGCCCCCGCAGAGACCC		signed equally well to $D_M 1$ , $D_M 2$ , or $D_M 5$ ; 4, clone A $\mu 47.2$ /
τμ58	A	TTAA-C-T	TTGGC	r indicates that the sequence
		D _{IR} 2		is reversed. Position 20 in
		.AGCCCAGCCCCCCACCCAGGAG		$D_{xp'}$ 1 in b has been reported
Τμ61	CGAG	A-T	TTGAAG	as C (39) or A (38).

tions; and the clustering of nucleotide changes in hypervariable regions. Setting aside the question of preferential utilization of certain  $V_H$  genes in pre-B cells—which occurs in fetal life (6, 47, 48)—the biased representation of certain groups of V genes, or the repeated use of individual or highly related V genes in the repertoire point to the effect of ligand selection on the popula-

tion (23). This was found for  $V_H$  gene families in the Aµ library, where  $V_H5$  genes were present out of proportion to their expected frequency.

There are probably more than 30 human  $D_H$  genes (37, 38). Thus any individual  $D_H$  gene in an unbiased population should have a frequency of less than 1/30 (< 3.3%). Another indica×

D

h	X	D	N	
D		D.,,2		
		AGGATATTGTAGTGGTGGTAGCTGCTACTCC		
Aµ41.1	CATTCCCC	-CACG	GGGCAAACGG	
Aµ78.1	Т	GG	AAAC	
Αμ95.1	GGAGAGGGGGGG		CTTGGGGTCTTTTGG	
Aµ1.2	Α		GATCCTCCGCGGGAAG	
<b>Αμ</b> 3.2	CTGGT	-CTA- ACA-	AAGGGTT TCAGGGGAG	
Αμ8.2 Τμ19	AGACGAC	T-	GAGCCTAGATCGT	
Τμ22	TGTGAAAGG	TC-G	CCCATCTCT	
Τμ26	TCCAG	TC	TG	
Τμ49	GATACCC	-C	GAACCG	
Tµ98/r	С	C-C	AGCACATC	
		D _{La} 3		
		AGCATATTGTGGTGGTGATTGCTATTCC		
Τμ86	CTGG	CAC	CTCCTT	
		R (		
		D _{La} 4 AAGGATATTGTAGTAGTACCAGCTGCTATGCC		
Aµ22.1	c	-GC-	TGAGCGGGGGG	
•	GATGTCGTG	G-C	GG	
	GACTCCCT	AT-GA		
-	CTAAGA	G	CC	
Aµ45.2		-G	CC	
		n		
		D _{QSZ} CTAACTGGGGGA		
Aµ99.1	TTTGCGACTC		С	
Τμ76	CCA	C	TGGCAGTG	
		<b>D</b> 1		
		D _{XF} 1 GTATTACTATGGTTCGGGGCGTTATTATAAC		
Aµ96.1	GGAACGAG	-AAA	A	
Aµ60.2	GATGGCA	A	CGATC	
Τμ0	CTTTCTT		AGGAC	
Τμ6	CATGGGGA	C-	CA	
Τμ16	_	A·A	G	
Τμ73	C	-TA-	AAG CA	
<b>Τμ74</b>	GGAGG	A- C-	TCGG	
Τμ90	С	C-	1000	
		D _{xP} 1		
		GTATTACGATATTTTGACTGGTTATTATAAT		
Αμ44.2			CGGGCTTT CCCCCTAAAA	
<b>Τμ1</b>	TATTGGTGGGGGC		CCTT	
Τμ60	GG		0011	
		D  2		
		GTATTATGATTACGTTTGGGGGAGTTATGCTTATACC		
Τμ29	CT	C-TCG C	CGG	
Tµ91	С		CTTCGGACA	
		D _{x P} 3		
		GTATTACTATGATAGTAGTGGTTATTACTAC		
Τμ42	GCAT	A-G		
Τμ46	GCTC	G-	CC	
Τμ83 Τμ87	CCGAGGCCG	G-GG	GG GCATGT	
Τμ87 Τμ100	CCGC GAGAAAC		JULIUI	
		D _x ,4		
Aµ101.	16	GTATTACGATTTTTGGAGTGGTTATTATACC C-G	С	
	GATCGGCG		TA	
Tu21			CCC	Figure 5 (Continued

Figure 5 (Continued)

tion of selection in the libraries we tested is the over-representation of the  $D_{LR}^2$  genes, present in 6 of the 54 Aµ clones (11%) and 5 of the 49 T $\mu$  clones (10%). The assignment of  $D_{LR}$  2 genes is possible because all five members of the  $D_{LR}$  family are known (38, 39).

Tµ21

С

Gu et al. (23) have analyzed members of a large  $V_H$  gene family (J558) expressed by B cells from three unimmunized CB.20 mice. In contrast to populations of pre-B cells, which expressed the  $\sim 100$  J558 genes randomly, populations of mature surface IgM⁺ splenic B cells were found to express preferen-

CCC

Aµ1.1	CCCCGTGACTTATGGGTCCACGAT
Au2.1	CTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA
Au5.1	GGTTCGACCCCTGGGGGCCAGGGAACCCTGGTCACC
Au49.1	TGGCCCGGCCAACCCGACTCCTCGCAACAG
Au51.1	GAGGCGGGGGGGGCCACACAG
Au52.1	GATCCTTTGAAGTCCGCGG
Au59.1	CTCGGGTGGCCGGGCCAGGAACAATACC
Αμ61.1	GTTGTAGGCGAAGTAAACTTTGGGAAAGTTGCGTTTT
Aµ70.1	TTCGCCGACGATGATCCCCGAG
A#73.1	CGGGGCTTCAATGGCCAACTGATTTT
•	
Aµ90.1	ATTTGCGGAATTAAGAACTGGCTCGGCCC
Αμ100.1	CGGGGCTCGGCTGGTACAGGGTA
Aµ6.2	GTATTGTTCCTGGCCCGGCACCCGAG
Aµ34.2	GGGAGAGATGGCTACA
Aµ42.2	TACTTCGCGCAA
Au43.2	ACAGACAGGCAGTACGAA
Τμ11	CGAGGGCCAATCACGGTGGTAACTCCGGAGGTGC
τμ25	GTCGATCCAGGATAACAGTGGCTGAAATGGAC
Τμ50	GCCAAGGACCGGCTG
Τμ69	GAGGACATGG
τμ70	ATCGTCGAGTCTTTGAGTACC

Figure 6. CDR3 base sequences that could not be assigned to germline  $D_H$  gene segments. These cDNAs do not contain a portion with more than 75% identity with known germline  $D_H$  genes.

tially certain members of the J558 family. This finding is analogous to ours, above, and to the repeated expression of  $V_H 18/2$ , a member of the  $V_H 3$  family, in humans (17). On the basis of their studies in the mouse, Gu et al. (23) proposed that the peripheral B cell population contains many B cells that have undergone ligand selection, perhaps soon after they emerge from the bone marrow. A similar conclusion can be drawn from our studies. Somatic mutation of V genes is a cardinal manifestation of clonal selection of B cells (49–56). In the case of the  $V_H$  gene segments we analyzed, definitive evidence of somatic mutation was found in the case of the 3  $V_H6$  clones (Fig. 2 *a*). These three clones differed from  $A\mu$ 's own germline sequence by 7 (A $\mu$ 34.2), 13 (A $\mu$ 46.2), and 7 bases (A $\mu$ 51.1). The A $\mu$ 34.2 and A $\mu$ 51.1 clones also had evidence of somatic mutation in their CDR3 sequences.

The sequences of the two functional  $V_H 5$  genes,  $V_H 251$  and  $V_H 32$ , are remarkably consistent in the human germline (37). The nucleotide sequences of all five examples of  $V_H 5$  family genes in both libraries differed from  $V_H 251$  and  $V_H 32$  by 1–15 bases (Fig. 2 b). Given the conservation of  $V_H 251$  and  $V_H 32$  in the germline, it is highly likely that the variations we observed can be attributed to somatic mutation.

Adding to the evidence from the  $V_H$  sequences for somatic mutation is the finding that the CDR3 portions of many  $J_H 4$ sequences in the  $A_{\mu}$  library differ from germline genes in a way that cannot be explained by polymorphism (Fig. 4). Whereas polymorphic sites, such as the  $G \rightarrow A$  substitution in  $J_H 4$ , are identical in all clones from the same subject (Fig. 4), somatic mutations of V genes are typically clone-specific. Furthermore, the variations from the  $J_H 4$  germline sequence were not random, but clustered at the 5' end of the gene; of the 42 bases that differ from the germline (not counting the polymorphic  $G \rightarrow A$ substitution), 81% occur at the 5' end of the gene, in the region that contributes to the CDR3.

A mechanism other than polymorphism is also required to account for the several  $D_H$  sequences that are closely related to  $D_{LR}$  and  $D_{XP}$  (Fig. 5). Even if subject  $A\mu$  had polymorphic

	N	D	N
Aµ4.1	GC	D _r 1 D _{lx} 3/r TATAGTGGGCTAC TCACCACCAC TG	GGGAC
Aµ2.2		D _{xr} 4 D _n 4 TATTACGATTTTTGGAGTGGTTATTA CAGCTCGTCC TCC-T	GGGCTGA
Aµ39.2	GGCGGAGGA	D _M 5 D _N 1 TGGAACAAC GCAGCAGCTGGTAC TG	TAGACG
•		D _N 4 D _x ,2 ATAGCAGCTCGTCC TTTGGGG	INGROG
<b>Αμ52.2</b>	ACG	AGTCAC D _N 1 D _{IR} 1 TATAGCAGCAGCTGGTAC GAGGCCCCC	
Τμ5	GATCA	TG D _N 1 D _{Q62} GTATAGCAGCAGC CTAACGGGGGG	TTTCG
Ťμ7	GATCTAACCTCTCT	$D_{\rm xr}1/r$ $D_{\rm N}1$	GTTTTCGGGAGAT
Τμ15	G	ATAATAACGCCCCGAA GGGTATAGCAGCAGCTGGTAC TGCGA-ATG D, 4 D, 2/r	CGGCG
Τμ23	GT	TTGTAGTAGTACCAGCTGCTATGC GGCTTGTGGGCG G-CA	AGTAC

Figure 7. CDR3 base sequences that may be accounted for by D-D or D-D_{IR} fusions. These include examples in which one of the fused segments is reversed ( $D_{LR}3/r$ ,  $D'_{XP}1/r$ , and  $D_{IR}2/r$ ).

Table II. cDNAs Closely Related to Germline  $V_H$  Genes

Clone No.	Percent identity	Related gene	V _H family	No. of bases sequenced
Τμ16	99.6	VH251	5	292
Τμ59	99.1	M60	2	222
Τμ73	99.1	58P2	4	230
Tμ74*	99.1	21/28	1	229
Τμ49	97.3	FL2-2	1	218
Αμ51.1	97.8	VH6	6	315
Αμ2.1	99.7	VH32	5	303

* Clone  $T\mu74$  has the same N and  $D_H$  sequence as the anti-DNA autoantibody 21/28 (see reference 76).

differences from the published  $D_{LR}2$  germline sequence in both alleles—an unlikely proposition because a sequence identical to  $D_{LR2}$  was found in one clone—that would account for only two of the six  $A\mu$  genes related to  $D_{LR}2$ .

Apart from the evidence compiled from the nucleotide sequences themselves, a cogent argument for the occurrence of somatic mutation in circulating IgM⁺ B cells is that the majority of the base substitutions we observed were not silent but resulted in a changed amino acid sequence. In studies of V gene sequences of antibodies produced during the secondary response of the mouse to several different classes of antigens, mutations causing amino acid substitutions ("replacement mutations") were found to exceed silent mutations by far, and were characteristically located in the CDRs (50, 52, 53, 57-64). That pattern is striking in the  $J_H4$  gene of the  $A\mu$  library. Of the 42 base differences from the germline sequence found among 49 J_H genes (not counting the polymorphic G  $\rightarrow$  A substitution), 5 were silent and 37 were replacement variants; of those 37 replacement variants, 31 (84%) occurred in the 5' CDR3coding region of the  $J_H$  genes (Fig. 4 b).

A similar, but less striking picture emerges from analysis of the seven  $V_H 5$  and  $V_H 6$  genes. The total number of base variations from germline sequences was 54; of those, 41 were replacement and 13 were silent (of the latter, 10 occurred in the three  $V_H 6$  genes). And of the 22 amino acid replacements in the  $V_H 5$ genes, 50% occurred in either CDR1 or CDR2. Although framework mutations can affect antibody binding properties (65), mutations in the CDRs, which are largely responsible for the ligand-binding surface of the immunoglobulin molecule, are the principal molecular signs of clonal selection. It is thus highly likely that the mutations we observed are a reflection of the selective effect of a ligand on the circulating B cell population.

These findings, when viewed as a whole, suggest that ligand-selected  $IgM^+$  B cells not only circulate in the blood of normal adults but they may comprise a substantial fraction of the B lymphocytes in human blood. They could correspond to long-lived memory cells that have been rescued from programmed cell death by contact with antigen (66). Indeed, it is likely that the B lymphocyte dies soon after it completes its differentiation, as a result of apoptosis, unless it undergoes selection by antigen (67). Our finding of somatic mutation in circulating B cells is of interest because B cells engaged in responses to specific antigens are generally thought to reside in the germinal centers of the spleen and lymph nodes (68). However, it was recently shown that during the secondary immune response of the mouse to horseradish peroxidase, B cells have been found to leave the germinal centers, enter the circulation, and seed the bone marrow where they mature into antibodyproducing plasma cells (69). Presumably, those cells underwent at least the initial stages of antigen selection, although the molecular evidence to support that conclusion is presently lacking.

Another noteworthy aspect of our results is that V region genes in a  $C\mu$  library showed evidence of somatic mutation. In the experiments of Gu et al. (23), no somatic mutations were found among 44 complete V region sequences in  $C\mu$  libraries from young unimmunized mice; Manser and Gefter (70) also found no somatic mutations in naive mice. Even so, it is known that IgM antibodies can be encoded by mutated V region genes (71), and that somatic mutation can be detected very early in the immune response (63), independently of heavy chain class switching (72).

The molecular signs of clonal selection in circulating B cells suggest that the selective ligand was encountered after the pre-B cell stage of differentiation, when the maturing B cell has rearranged its V genes (73) and expressed at least a surface heavy chain. In the steady state, such B cells could represent long-lived circulating memory cells that provide an early defense against microbial reinvasion; or, in some instances they may represent selection of the repertoire by idiotypes or antiidiotypes (74). In either case, any analysis of V gene repertoires in disease will have to take into account the variations in composition and structure of the normal repertoire.

#### **Acknowledgments**

This research was supported by grants AI-19794 and AI-26450 from the National Institutes of Health. A. K. Stewart is a fellow of the Medical Research Council of Canada.

#### References

1. Tonegawa, S. 1983. Somatic generation of antibody diversity. Nature (Lond.). 302:575-581.

2. Alt, F. W., T. K. Blackwell, and G. D. Yancopoulos. 1987. Development of the primary antibody repertoire. *Science (Wash. DC)*. 238:1079-1087.

3. Berek, C., and C. Milstein. 1988. The dynamic nature of the antibody repertoire. *Immunol. Rev.* 105:5-26.

4. Cuisinier, A. M., V. Guigou, L. Boubli, M. Fougereau, and C. Tonnelle. 1989. Preferential expression of VH5 and VH6 immunoglobulin genes in early human B-cell ontogeny. *Scand. J. Immunol.* 30:493–497.

 Schroeder, H. W., Jr., J. L. Hillson, and R. M. Perlmutter. 1987. Early restriction of the human antibody repertoire. *Science (Wash. DC)*. 238:791–793.

 Schroeder, H. W., Jr., and J. Y. Wang. 1990. Preferential utilization of conserved immunoglobulin heavy chain variable gene segments during human fetal life. *Proc. Natl. Acad. Sci. USA*. 87:6146–6150.

7. Yancopoulos, G. D., S. V. Desiderio, M. Paskind, J. F. Kearney, D. Baltimore, and F. W. Alt. 1984. Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. *Nature (Lond.)*. 311:727-733.

8. Malynn, B. A., G. D. Yancopoulos, J. E. Barth, C. A. Bona, and F. W. Alt. 1990. Biased expression of JH-proximal VH genes occurs in the newly generated repertoire of neonatal and adult mice. J. Exp. Med. 171:843–859.

9. Cuisinier, A. M., F. Fumoux, D. Moinier, L. Boubli, V. Guigou, M. Milili, C. Schiff, M. Fougereau, and C. Tonnelle. 1990. Rapid expansion of human immunoglobulin repertoire (VH, Vkappa, Vlambda) expressed in early fetal bone marrow. *New Biol.* 2:689–699.

10. Guigou, V., B. Guilbert, D. Moinier, C. Tonnelle, L. Boubli, S. Avrameas, M. Fougereau, and F. Fumoux. 1991. Ig repertoire of human polyspecific antibodies and B cell ontogeny. J. Immunol. 146:1368–1374.

11. Kipps, T. J., E. Tomhave, L. F. Pratt, S. Duffy, P. P. Chen, and D. A. Carson. 1989. Developmentally restricted immunoglobulin heavy chain variable region gene expressed at high frequency in chronic lymphocytic leukemia. *Proc. Natl. Acad. Sci. USA*. 86:5913–5917.

12. Kipps, T. J., B. A. Robbins, A. Tefferi, G. Meisenholder, P. M. Banks, and D. A. Carson. 1990. CD5-positive B-cell malignancies frequently express crossreactive idiotypes associated with IgM autoantibodies. *Am. J. Pathol.* 136:809-816.

13. Casali, P., and A. L. Notkins. 1989. Cloning the human B-cell repertoire with EBV: polyreactive antibodies and CD5+ lymphocytes. *Annu. Rev. Immunol.* 7:513-535.

14. Schutte, M. E. M., S. B. Ebeling, K. E. Akkermans, F. H. J. Gmelig-Meyling, and T. Logtenberg. 1991. Antibody specificity and immunoglobulin  $V_H$  gene utilization of human monoclonal CD5⁺ B cell lines. *Eur. J. Immunol.* 21:1115–1121.

15. Logtenberg, T., F. M. Young, J. H. Van Es, F. H. J. Gmelig-Meyling, and F. W. Alt. 1989. Autoantibodies encoded by the most JH-proximal human immunoglobulin heavy chain variable region gene. *J. Exp. Med.* 170:1347–1355.

16. Pascual, V., J. Andris, and J. D. Capra. 1990. Heavy chain variable region gene utilization in human antibodies. *Int. Rev. Immunol.* 5231:231-238.

17. Guillaume, T., D. B. Rubinstein, F. Young, L. Tucker, T. Logtenberg, R. S. Schwartz, and K. Barrett. 1990. Individual VH genes detected with oligonucleotide probes from the complementarity-determining regions. *J. Immunol.* 145:1934–1945.

18. Sanz, I., P. Casali, J. W. Thomas, A. L. Notkins, and J. D. Capra. 1989. Nucleotide sequences of eight human natural autoantibody VH regions reveals apparent restricted use of VH families. J. Immunol. 142:4054–4061.

19. Guigou, V., A. M. Cuisinier, C. Tonnelle, D. Moinier, M. Fougereau, and F. Fumoux. 1990. Human immunoglobulin VH and VK repertoire revealed by in situ hybridization. *Mol. Immunol.* 27:935–940.

20. Zouali, M., and J. Thèze. 1991. Probing  $V_H$  gene-family utilization in human peripheral B cells by in situ hybridization. J. Immunol. 146:2885-2864.

21. Yamada, M., R. Wasserman, B. A. Reichard, S. Shane, A. J. Caton, and G. Rovera. 1991. Preferential utilization of specific immunoglobulin heavy chain diversity and joining segments in adult human peripheral blood B lymphocytes. *J. Exp. Med.* 173:395–407.

22. Blaison, G., J.-L. Kuntz, and J.-L. Pasquali. 1991. Molecular analysis of  $V_k$ III variable regions of polyclonal rheumatoid factors during rheumatoid arthritis. *Eur. J. Immunol.* 21:1221-1227.

23. Gu, H., S. Tarlinton, W. Müller, K. Rajewsky, and I. Förster. 1991. Most peripheral B cells in mice are ligand selected. J. Exp. Med. 173:1357-1371.

24. Bangs, L. A., I. E. Sanz, and J. M. Teale. 1991. Comparison of D,  $J_H$ , and junctional diversity in the fetal, adult, and aged B cell repertoires. *J. Immunol.* 146:1996–2004.

25. Feeney, A. J. 1990. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J. Exp. Med. 172:1377-1390.

26. Sanz, I. 1991. Multiple mechanisms participate in the generation of diversity of human H chain CDR3 regions. J. Immunol. 147:1720-1729.

27. Crain, M. J., S. K. Sanders, J. L. Butler, and M. D. Cooper. 1989. Epstein-Barr virus preferentially induces proliferation of primed B cells. *J. Immunol.* 143:1543-1548.

28. Decker, D. J., N. A. Boyle, J. A. Koziol, and N. R. Klinman. 1991. The expression of the Ig H chain repertoire in developing bone marrow B lineage cells. *J. Immunol.* 146:350–361.

29. Huang, C., and B. D. Stollar. 1991. Construction of representative immunoglobulin variable region cDNA libraries from human peripheral blood lymphocytes without in vitro stimulation. J. Immunol. Methods. 141:227-236.

30. Gubler, U., and B. Hoffman. 1983. A simple and very efficient method for generating cDNA libraries. *Gene.* 25:263-269.

31. Trepicchio, W., Jr., and K. J. Barrett. 1987. Eleven MRL-lpr/lpr anti-DNA autoantibodies are encoded by genes from four VH gene families: a potentially biased usage of VH genes. J. Immunol. 138:2323-2331.

32. Berman, J. E., S. J. Mellis, R. Pollock, C. L. Smith, H. Suh, B. Heinke, C. Kowai, U. Surti, L. Chess, C. R. Cantor, et al. 1988. Content and organization of the human Ig VH locus: definition of three new VH families and linkage to the Ig CH locus. *EMBO (Eur. Mol. Biol. Organ.) J.* 7:727-738.

33. Logtenberg, T. 1990. Properties of polyreactive natural antibodies to self and foreign antigens. J. Clin. Immunol. 10:137-140.

34. Walter, M. A., U. Surti, M. H. Hofker, and D. W. Cox. 1990. The physical organization of the human immunoglobulin heavy chain gene complex. *EMBO* (*Eur. Mol. Biol. Organ.*) J. 9:3303–3313.

35. Clarke, S. H., and S. Rudikoff. 1984. Evidence for gene conversion among immunoglobulin heavy chain variable region genes. J. Exp. Med. 159:773-782.

36. Dersimonian, H., A. Long, D. Rubinstein, B. D. Stollar, and R. S. Schwartz. 1990. VH genes of human autoantibodies. *Int. Rev. Immunol.* 5:253–264.

37. Pascual, V., and J. D. Capra. 1991. Human immunoglobulin heavy-chain variable region genes: organization, polymorphism, and expression. *Adv. Immunol.* 49:1-74.

38. Ichihara, Y., H. Matsuoka, and Y. Kurosawa. 1988. Organization of human immunoglobulin heavy chain diversity gene loci. *EMBO (Eur. Mol. Biol. Organ.) J.* 7:4141–4150.

39. Buluwela, L., D. G. Albertson, P. Sherrington, P. H. Rabbitts, N. Spurr, and T. H. Rabbitts. 1988. The use of chromosomal translocations to study hu-

man immunoglobulin gene organization: mapping DH segments within 35 kb of the Cu gene and identification of a new DH locus. *EMBO (Eur. Mol. Biol. Organ.) J.* 7:2003-2010.

40. Siebenlist, U., J. V. Ravetch, S. Korsmeyer, T. Waldmann, and P. Leder. 1981. Human immunoglobulin D segments encoded in tandem multigenic families. *Nature (Lond.)*. 294:631–635.

41. Dilosa, R. M., K. Maeda, A. Masuda, A. K. Szakal, and J. G. Tew. 1991. Germinal center B cells and antibody production in the bone marrow. *J. Immunol*. 146:4071–4077.

42. Eckert, K. A., and T. A. Kunkel. 1991. DNA polymerase fidelity and the polymerase chain reaction. *PCR Methods Appl.* 1:17-24.

43. Ling, L. L., P. Keohavong, C. Dias, and W. G. Thilly. 1991. Optimization of the polymerase chain reaction with regard to fidelity: modified T7, Taq, and Vent DNA polymerases. *PCR Methods Appl.* 1:63–69.

44. Young, F., L. Tucker, D. Rubinstein, T. Guillaume, J. Andre-Schwartz, K. J. Barrett, R. S. Schwartz, and T. Logtenberg. 1990. Molecular analysis of a germ line-encoded idiotypic marker of pathogenic human lupus autoantibodies. J. Immunol. 145:2545-2553.

45. Kabat, E. A., K. G. Nickerson, J. Liao, L. Grossbard, E. Osserman, E. Glickman, L. Chess, J. B. Robbins, R. Schneerson, and Y. Yang. 1986. A human monoclonal macroglobulin with specificity for a  $(2 \rightarrow 8)$ -linked poly-*N*-acetyl neuraminic acid, the capsular polysaccharide of group B meningococci and *Escherichia coli* K1, which cross-reacts with polynucleotides and with denatured DNA. J. Exp. Med. 164:642–654.

46. Atkinson, P. M., G. Lampman, B. C. Furie, Y. Naparstek, R. S. Schwartz, B. D. Stollar, and B. F. Furie. 1985. Homology of the NH2-terminal amino acid sequences of the heavy and light chains of human monoclonal lupus autoantibodies containing the dominant 16/6 idiotype. J. Clin. Invest. 75:1138-1143.

47. Teale, J. M. 1985. B cell immune repertoire diversifies in a predictable order in vitro. J. Immunol. 135:954-958.

48. Jeong, H. D., and J. M. Teale. 1988. Comparison of the fetal and adult functional B cell repertoires by analysis of VH gene family expression. J. Exp. Med. 168:589-603.

49. French, D. L., R. Laskov, and M. D. Scharff. 1989. The role of somatic hypermutation in the generation of antibody diversity. *Science (Wash. DC)*. 244:1152-1157.

50. Kocks, C., and K. Rajewsky. 1988. Stepwise intraclonal maturation of antibody affinity through somatic hypermutation. *Proc. Natl. Acad. Sci. USA*. 85:8206–8210.

51. Rajewsky, K., I. Förster, and A. Cumano. 1987. Evolutionary and somatic selection of the antibody repertoire in the mouse. *Science (Wash. DC)*. 238:1088-1094.

52. Wysocki, L., T. Manser, and M. L. Gefter. 1986. Somatic evolution of variable region structures during an immune response. *Proc. Natl. Acad. Sci.* USA. 83:1847-1851.

53. Berek, C., G. M. Griffith, and C. Milstein. 1985. Molecular events during maturation of the immune response to oxazolone. *Nature (Lond.)*. 316:412–418.

54. Manser, T., S. Y. Huang, and M. L. Gefter. 1984. Influence of clonal selection on the expression of immunoglobulin variable region genes. *Science (Wash. DC).* 226:1283–1288.

55. Baltimore, D. 1981. Somatic mutation gains its place among the generators of diversity. *Cell.* 27:573-581.

56. Kim, S., M. David, E. Sinn, P. Patten, and L. Hood. 1981. Antibody diversity: somatic hypermutation of rearranged VH genes. *Cell*. 27:573-581.

57. Clarke, S. H., L. M. Staudt, J. Kavaler, D. Schwartz, W. U. Gerhard, and M. G. Weigert. 1990. V region gene usage and somatic mutation in the primary and secondary responses to influenza virus hemagglutinin. J. Immunol. 144:2795-2801.

58. Chien, N. C., R. R. Pollock, C. Desaymard, and M. D. Scharff. 1988. Point mutations cause the somatic diversification of IgM and IgG2a antiphosphorylcholine antibodies (published erratum appears in 1990. J. Exp. Med. 172:669). J. Exp. Med. 167:954–973.

59. Claflin, J. L., J. Berry, D. Flaherty, and W. Dunnick. 1987. Somatic evolution of diversity among anti-phosphocholine antibodies induced with *Proteus morganii*. J. Immunol. 138:3060-3068.

60. Cumano, A., and K. Rajewsky. 1986. Clonal recruitment and somatic mutation in the generation of immunological memory to the hapten NP. *EMBO* (*Eur. Mol. Biol. Organ.*) J. 5:2459-2468.

61. Weiss, U., and K. Rajewsky. 1990. The repertoire of somatic antibody mutants accumulating in the memory compartment after primary immunization is restricted through affinity maturation and mirrors that expressed in the secondary response. J. Exp. Med. 172:1681–1689.

62. Sablitsky, F., G. Wildner, and K. Rajewsky. 1985. Somatic mutation and clonal expansion of B cells in an antigen-driven immune response. *EMBO (Eur. Mol. Biol. Organ.) J.* 4:345-350.

63. Levy, N. S., U. V. Malipiero, S. G. Lebecque, and P. J. Gearhart. 1989. Early onset of somatic mutation in immunoglobulin VH genes during the primary immune response. J. Exp. Med. 169:2007-2019.

64. Clarke, S., K. Huppi, D. Ruezinsky, L. Staudt, W. Gerhard, and M.

Weigert. 1985. Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin. J. Exp. Med. 161:687-704.

65. Panka, D. J., M. Mudgett-Hunter, D. R. Parks, L. L. Peterson, L. A. Herzenberg, E. Haber, and M. N. Margolies. 1988. Variable region framework differences result in decreased or increased affinity of variant anti-digoxin antibodies. *Proc. Natl. Acad. Sci. USA*. 85:3080–3084.

66. Förster, I., and K. Rajewsky. 1990. The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. *Proc. Natl. Acad. Sci. USA*. 87:4781–4784.

67. Schittek, B., and K. Rajewsky. 1990. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. *Nature (Lond.)*. 346:749–751.

68. Jacob, J., R. Kassir, and G. Kelsoe. 1991. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. J. Exp. Med. 173:1165-1175.

69. Long, A., J. Mueller, J. Andr'-Schwartz, K. J. Barrett, R. Schwartz, and H. Wolfe. 1992. High specificity in-situ hybridization: methods and application. *Diagn. Mol. Pathol.* 1:45-57.

70. Manser, T., and M. Gefter. 1986. The molecular evolution of the immune response: idiotype specific suppression indicates that B-cells express germ-line-encoded V genes prior to antigenic stimulation. *Eur. J. Immunol.* 16:1439-1444.

71. Hartman, A. B., and S. Rudikoff. 1984. VH genes encoding the immune response to beta-(1,6)-galactan: somatic mutation in IgM molecules. *EMBO* (*Eur. Mol. Biol. Organ.*) J. 3:3023-3030.

72. Shan, H., M. Shlomchik, and M. Weigert. 1990. Heavy-chain class switch does not terminate somatic mutation. J. Exp. Med. 172:531-536.

73. Roes, J., K. Hüppi, K. Rajewsky, and F. Sablitzky. 1989. V gene rearrangement is required to fully activate the hypermutation mechanism in B cells. J. Immunol. 142:1022-1026.

74. Freitas, A. A., O. Burlen, and A. Coutinho. 1988. Selection of antibody repertoires by anti-idiotypes can occur at multiple steps of B cell differentiation. *J. Immunol.* 140:4097–4102.

75. Shuldiner, A. R., A. Nirula, and J. Roth. 1989. Hybrid DNA artifact from PCR of closely related target sequences. *Nucleic Acids Res.* 17:4409.

76. Dersimonian, H., R. S. Schwartz, K. J. Barrett, and B. D. Stollar. 1987. Relationship of human variable region heavy chain (VH) germline genes to genes encoding anti-DNA autoantibodies. *J. Immunol.* 139:2496-2501.