Immunoglobulin Light Chain Variable Region Gene Sequences for Human Antibodies to Haemophilus influenzae Type b Capsular Polysaccharide Are Dominated by a Limited Number of V_x and V_x Segments and VJ Combinations

Elisabeth E. Adderson,* Penelope G. Shackelford,* Richard A. Insel,[§] Anthony Quinn,* Patricia M. Wilson,[‡] and William L. Carroll[‡]

*Division of Infectious Diseases and [‡]Hematology Oncology, Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri 63110; and [§]Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642

Abstract

The immune repertoire to Haemophilus influenzae type b capsular polysaccharide (Hib PS) appears to be dominated by certain light chain variable region genes (IgV_L). In order to examine the molecular basis underlying light chain bias, IgV_L genes have been cloned from a panel of heterohybridomas secreting human anti-Hib PS (antibody) (anti-Hib PS Ab). One hybridoma, representative of the predominant serum clonotype of anti-Hib PS Ab in older children and adults following immunization or Hib infection, uses a VII segment identical to the germline gene A2, and a JK3 segment. A second kappa hybridoma uses a member of the V,I family and a JK4 segment. Four lambda antibodies, all cross-reactive with the structurally related antigen Escherichia coli K100 PS, use V, VII segments which are 96-98% homologous to one another, and may originate from a single germline gene. Two additional lambda antibodies, not K100-cross-reactive, are encoded by members of the V_{λ} II family. All lambda antibodies use highly homologous $J_{\lambda}2$ or $J_{\lambda}3$ segments. The VJ joints of all lambda antibodies and the V,II-encoded antibody are notable for the presence of an arginine codon, suggesting an important role in antigen binding. Although more complex than heavy chain variable region gene usage, a significant portion of serum anti-Hib PS Ab is likely to be encoded by a limited number of V_{λ} and V_{λ} segments and VJ combinations, which may be selectively expressed during development, or following antigen exposure. (J. Clin. Invest. 1992: 89:729-738.) Key words: B-cell repertoire • somatic mutation • gene rearrangement • carbohydrate antigen

Introduction

The development of the antibody repertoire involves the recombination of individual members of two or three groups of germline segments, nucleotide insertion or deletion at these junctions, and somatic mutation of rearranged genes (1-4). The individual contributions of these molecular mechanisms to the generation of the immune repertoire against a specific antigen has been extensively studied in murine systems, but it is uncertain whether these findings can be extrapolated to humans. The chromosomal organization of the human heavy and light chain variable region segments within the immunoglobulin loci differ from those of mice (5-7). Furthermore, the response of highly inbred laboratory animal strains, and the use of simple haptens in most studies, may not be comparable with the human response to clinically relevant antigens, such as those presented by microbial pathogens.

The immune response to *Haemophilus influenzae* type b capsular polysaccharide (Hib PS)¹ is an excellent model to examine the immune repertoire to a functionally significant antigen. Hib is a major bacterial pathogen in young children and antibody directed against the capsular polysaccharide, a repetitive polymer of polyribosylribitol phosphate, protects against invasive infection (8). Similar to the response to other polysaccharide antigens, the immune response to Hib PS is age-dependent. Children under 5 yr have lower antibody responses and are at greatest risk of infection. Additionally, there appear to be variations in individual and ethnic susceptibilities to invasive Hib disease (9-11). Analysis of the immune response to Hib PS will contribute to our understanding of the development of the human antibody repertoire, and provide insight into age-related and possible genetic predisposition to infection caused by Hib.

Previous studies employing partial amino acid sequencing of anti-Hib PS serum antibody purified to clonality have shown that light chains of anti-Hib PS antibody are encoded by V_{λ} , and at least three V_{κ} gene families (12). Although highly informative, these studies have inherent technologic limitations. To obtain sufficient antibody for analysis, only individuals with antibody concentrations much higher than those elicited in young infants could be studied (12). Amino acid sequences were unobtainable on V₂-encoded antibodies, and certain regions of V, encoded antibodies (12, 13). Obtaining nucleic acid sequences of variable region genes encoding anti-Hib PS Abs would permit precise comparison of variable region genes obtained from different individuals, allowing classification of these genes into germline families and subfamilies, analysis of D- and J-segment usage, and assessment of the role of somatic mutation in the clonal evolution of this immune response. Additionally, this information could be applied to examination of the germline and expressed immune repertoire

Presented in part at the annual meeting of the Society for Pediatric Research, New Orleans, LA, 2 May 1991, and published in abstract form (*Pediatr. Res.* 29:155A).

Address correspondence and reprint requests to Dr. William L. Carroll, Program in Human Molecular Biology and Genetics, University of Utah, Bldg. 533, Salt Lake City, UT 84112.

Received for publication 14 August 1991 and in revised form 5 November 1991.

J. Clin. Invest.

[©] The American Society for Clinical Investigation, Inc. 0021-9738/92/03/0729/10 \$2.00

Volume 89, March 1992, 729-738

^{1.} Abbreviations used in this paper: Ars, anti-p-azophenylarsonate; Hib, Haemophilus influenzae type b; Hib PS, Hib capsular polysaccharide; IgV_L , light chain variable region gene; PCR, polymerase chain reaction; SSC, standard saline citrate.

of individuals of various ages, and populations at high risk for invasive Hib infection.

Our previous work, and that of others, indicated that the heavy chains of anti-Hib PS Abs are encoded by a very restricted number of V_HIII gene segments, in combination with a variety of D and J_H segments (12, 14). We have extended our studies to examine light chain variable region gene (IgV_L) usage in the human anti-Hib PS response. A major component of serum anti-Hib PS Ab expresses a cross-reactive idiotype associated with the use of a V₄II gene (15, 16). Antibodies expressing this light chain account for the majority of anti-Hib PS antibody in older infants and adults following invasive Hib disease or immunization. Most lambda-encoded anti-Hib antibodies and some kappa-encoded (V,I and V,III) anti-Hib PS Abs cross-react with the capsular polysaccharide of E. coli K100 (12, 17). Naturally acquired antibody of the majority of children expresses K100 PS cross-reactivity, and thus, colonization with this organism may provide protective immunity before exposure to Hib (18). Our results indicate that two important anti-Hib PS light chains, one associated with V II expression and the other with lambda antibodies cross-reactive with K100 PS, are encoded by two germline elements that may be expressed with little or no somatic mutation. Moreover, a nongermline-encoded arginine at the VJ joint is seen in the majority of anti-Hib PS Ab light chains, a result suggesting an essential role in antigen recognition.

Methods

Hybridomas. Heterohybridomas secreting human monoclonal anti-Hib PS antibody were obtained, as previously described (14). Volunteers were immunized with either plain Hib-PS vaccine (Praxis Biologicals, Rochester, NY) or Hib-PS diphtheria toxoid conjugate vaccine (Hib-PS-D) (Connaught Laboratories, Swiftwater, PA). 7 d following immunization, peripheral blood lymphocytes were harvested and fused to the nonsecreting mouse myeloma SP2/O-Ag14. Anti-Hib PS Ab was detected by binding to Hib PS in an ELISA, as previously described (14). Specificity was documented by antibody binding to ¹²⁵I-labeled antigen (19), and by inhibition of binding by 1.25 μ g/ml of soluble Hib PS in an ELISA (20). Cross-reactivity with E. coli K100 PS was assayed by inhibition of binding to Hib PS-poly-L-lysine with 100 μ g/ml of soluble K100 PS in an ELISA. An antibody concentration was selected that gave half-maximum absorbance in the ELISA. Greater than 15% inhibition was considered positive. The E. coli K100 PS was prepared from E. coli strain Easter, by the same method used to prepare Hib PS (19). The generation of hybridoma line 16M3C8 was described previously (21).

Cloning and sequencing of IgV_L genes. Total RNA was prepared from 10⁶ hybridoma cells using the guanidine isothiocyanate method (22). 2 to 8 μ g of total RNA served as template for first-strand cDNA synthesis, as previously described (14). 10 pmol of a consensus antisense primer corresponding to conserved sequences within the human kappa or lambda constant region (23) (C_e codons 181-172:5'CAGCGTCAAGCTTCTGCTGTGGCTGTAGGT 3', C_A codons 171-181:5'CAGGCTCAGGAAGCTTCTGGCCGCGTACTTG-TT 3') was used to initiate cDNA synthesis by avian myeloblastosis virus (AMV) reverse transcriptase (RT; Life Sciences, St. Petersburg, FL). One half (10 μ l) of the cDNA reaction was directly diluted into polymerase chain reactions (PCR), (24).

PCR conditions were as previously described, except that 70 pmol of an internal constant region consensus primer (C_c codons 125-117:5'CAACGGATCCTCTGATGGCGGGAAGAT 3', C_h codons 125-117:5'TGGGGATCCAGCTCCTCAGAGGAGGG 3') and 70 pmol of a degenerate 3' kappa or lambda leader sequence primer (kappa:5'GGGAATTCATGGACATG(GA)(GA)(GA)(GAT)(TC)CC-

(ACT)(GAC)G(TC)(GT)CA(GC)CTT 3', lambda 5'GGGAATTCA-TG(GA)CCTG(GC)(AT)C(TC)CCTCTC(TC)T(TC)CT(GC)(AT)-(TC)C 3') were used to amplify rearranged variable region genes (14, 25).

PCR products were isolated from low melting-point agarose gels (FMC Bioproducts, Rockland, ME). Artificial restriction enzymes sites in each primer allowed directional cloning into M13mp18 and M13mp19 phage vectors (Boehringer Mannheim Corp., Indianapolis, IN). Sequencing of V_L genes was performed by the dideoxy technique (26). Two to five positive clones were obtained and sequenced for each hybridoma gene.

The 16M3C8 light chain was generated by amplification of firststrand cDNA, with primers corresponding to amino acid positions -7of the leader, to position 6 of the lambda light chain (5'CTGCACAGGGTCCTGGGCCGAGCTCGTGGTGACTCA 3'), and the C_{λ} constant region (antisense, 5'GCATTCTAGACTATTAT-GAACATTCTGTAGGGGGC3'). Blunt-ended PCR products were cloned into SmaI cut M13 mp18 and M13mp19 and sequencing was also performed by the dideoxy method.

Southern blot analysis of genomic DNA. Peripheral blood was obtained from 10 unrelated healthy adult volunteers, from L.S. (the donor of hybridoma LSF2), and from a parent of L.S. Lymphocytes were separated on a Ficoll-Hypaque gradient, and genomic DNA was prepared by Proteinase K digestion (27). 10 µg of each subject's genomic DNA was digested with BamHI (4 U/µg DNA) (Boehringer Mannheim Corp.) at 37°C for 16 h, according to manufacturer's specifications. Digested DNA was separated by electrophoresis in a 0.8% agarose gel using TAE buffer (0.04 M Tris-acetate/0.001 M EDTA), and was transferred to Duralon UV membranes (Stratagene Inc., La Jolla, CA), using a positive pressure blotting apparatus (Posiblotter; Stratagene, Inc.). To examine germline representation of anti-Hib PS Ig genes, genomic DNA was hybridized with a 320-bp EcoRI/Smal V_{λ} segment from hybridoma LSF2 that lacked the associated J_{λ} and C_{λ} regions. Probe was radiolabeled to high specific activity using T7 DNA polymerase (28). Prehybridization and hybridizations were carried out in 5× standard saline citrate (SSC), 5× Denhardt's solution, and 200 μ g/ml sheared and denatured salmon sperm DNA (Boehringer Mannheim Corp.) at 42°C overnight. Filters were washed with 2× SSC, 0.2% SDS at room temperature twice, then with $0.2 \times$ SSC, 0.2% SDS at 55 to 60°C twice, and exposed to X-OMAT AR film (Eastman Kodak Co., Rochester, NY) for 2-7 d.

In order to further localize germline candidates within V region families, an oligonucleotide probe corresponding to conserved sequences within the CDR-1 region (sense oligonucleotide: 5'GGCTC-CAGCACTGGAGATGTCACCAGT 3', antisense oligonucleotide: 5'GTAGGGATAATGACCACTGGTGACATCTCC 3') was hybridized to genomic DNA using the method described by Hellman (29). 15 μ g of BamHI-digested human genomic DNA was separated by electrophoresis in 0.8% agarose gel using TBE buffer (0.09 M Tris-borate/ 0.002 M EDTA). Agarose gels were dried under vacuum and hybridized in 5× saline/sodium phosphate/EDTA (SSPE), 0.1% SDS, and 106 μ g/ml of sheared and denatured salmon sperm DNA with 2 \times 10⁶ cpm of probe/ml of hybridization solution at 60°C for 16 h (30, 31). Hybridization conditions were previously adjusted to minimize nonspecific binding. Gels were washed with $6 \times$ SSC at room temperature for 20 min twice, followed by a 4-h room temperature wash. The gel was finally washed in 6× SSC for 3 min at 64°C, and exposed to X-OMAT AR film for 4 d.

Results

Hybridomas

Eight hybridoma cell lines from seven individuals were initially selected from 20 cell lines. All individuals demonstrated substantial increases in serum anti-Hib PS Ab 1 mo after vaccination (Table I). Hybridomas were selected to exemplify serologic characteristics (kappa or lambda expression, and K100 PS

Table I. Summary of Hybridoma Cell Lines*

					Seru	m Anti	-Hib P	S Ab
					Tota	l Ab	λ K 10	0 Inh
Hybridoma	Isotype	Age	Vaccine Form	K100 Inh of mAb	Рге	Post	Pre	Post
RC3	IgA/k	Adult	PS-D	_	1.1	300	11	11
ED6.1	IgG ₂ /k	4 yr	PS-D	-	0.8	22	0	0
SB5/D6	IgA_1/λ	Adult	PS-D	+	2.0	688	30	27
RAY4	IgA_2/λ	Adult	PS-D	+	1.9	28	0	42
LSF2	IgA_1/λ	Adult	PS	+	ND	138	ND	29
JB32	IgA_1/λ	11 yr	PS	+	0.3	125	19	33
JB21	IgG ₂ /λ	11 yr	PS	_	0.3	125	19	33
16M3C8	IgG_2/λ	Adult [‡]	PS	-	ND	ND	ND	ND

* Columns show name of hybridoma cell line, isotype of anti-Hib PS Ab secreted, age of subject at immunization, type of vaccine (PS is plain polysaccharide, PS-D is Hib PS covalently linked to diphtheria toxoid), presence (+) or absence (-) of inhibition of binding of anti-Hib PS Ab by *E. coli* K100 PS, concentration of total serum anti-Hib PS AB pre- and 1 mo post-immunization, and percent inhibition of binding of serum lambda antibodies to Hib PS by *E. coli* K100 PS in pre- and 1 mo post-immunization sera. [‡] Pool of 3 adult donors. ND, not done.

cross-reactivity) and to represent the response to "T-independent" plain polysaccharide, or "T-dependent" polysaccharideprotein conjugate forms of antigen. (Table I).

Four lambda-expressing anti-Hib PS Ab, obtained from four different subjects, cross-reacted with K100 PS. One of these individuals, RAY4, had no detectable serum cross-reactivity before immunization. The Abs JB32 and JB21 were obtained from the same individual, and differed in heavy chain isotype and K100 cross-reactivity. IgV_L genes. IgV_L nucleic acid sequences were obtained from two kappa and six lambda hybridomas. Candidate germline IgV_L sequences were sought by comparing hybridoma sequences to those registered with EMBL and GenBank (32).

Four lambda-expressing hybridomas, derived from four unrelated subjects, use V_{λ} segments which are 96–98% homologous to one another, and are members of the germline V_{λ} VII family of which a single member, 4A, has been previously described (33) (Fig. 1). Notably, each of these four V_{λ} VII-encoded hybridomas cross-reacts with K100 PS. The high degree of homology between these segments suggests that these genes may be encoded by a single, or group of, closely related germline elements. The four hybridoma genes share a number of nucleic acid differences (maximum nucleic acid sequence homology 89%) from the only previously sequenced V_{λ} VII germline gene 4A, implying that these genes may be derived from another, as yet undescribed, V_{λ} VII germline element.

The homology of the translated amino acid sequences of these 4 V_{λ} VII sequences parallels the nucleic acid homology. The hybridoma V_{λ} VII genes are 90 to 97% homologous at the amino acid level (Fig. 2). Framework regions are 94 to 100% homologous, whereas CDR regions are 72 to 96% homologous. Whether these minor differences reflect genetic polymorphisms, or somatic mutation, cannot be resolved from these data.

JB21 and 16M3C8, the lambda-expressing hybridomas which do not cross-react with K100 PS, are encoded by a $V_{\lambda}II$ gene family member (34), (Fig. 3). JB21 is 91% homologous to the germline $V_{\lambda}2.1$ gene (99% homologous in framework regions and 74% homologous in CDRs). 16M3C8 is 89% homologous to $V_{\lambda}2.1$ (95% in framework regions and 77% in CDRs). JB21 shares 87% amino acid homology with the translated $V_{\lambda}2.1$ germline sequence (99% in framework regions and 60% in CDR regions), and 16M3C8 shares 82% amino acid homology (92% in framework regions and 60% in CDRs) (Fig. 4).

Germline V ₁ VII	CAG	ACT	GTG	GTG	ACT	CAG	GAG	CCC	TCA	CTG	ACT	GTG	TCC	CCA	GGA	GGG	ACA	GTC	ACT	СТС	ACC		
RAY4		G																					
SB5/D6		G··																	G · ·				
LSF2		G																					
JB32		G · ·																					
							_																
							CDR-1				30										40		
Germline V _λ VII	TGT	GCT	TCC	AGC	ACT	GGA	GCA	GTC	ACC	AGT	GGT	TAC	TAT	CCA	AAC	TGG	TTC	CAG	CAG		ССТ	GGA	
RAY4	• • •	·GC	• • •				T					C·T		• • C	т			· · ·	• • •	• • G		C	
SB5/D6	• • •	- GC					T				• • •	С・Т	• • •	• • C	τ					G		• • C	
LSF2	• • •	- GC		• • •			- A T				• • •	С - Т		C	т					• • G		C	
JB32	• • •	- G C					- G T			• • •	A · ·	С・Т		G · C	τ				• • •	• • G		C	
									60			008.2				۱							
Germline Vs VII		604	000	466	6.0.4	CTG		TAT	AGT			440		C + C	TCC	1.00		~ ~ T	000	~~~			
BAYA									1		AGC	200	~~~	CAC	100	100			GUU	CGG	110	I C A	
SB5/D6					.																• • •		
LSF2		č			.				644														
.B32					2				644					A · · ·			•••	•••					
		•							011		- 4 -]							
							70										80						
Germline V _Å VII	GGC	тсс	стс	СТТ	GGG	GGC		GCT	GCC	CTG	ACA	CTG	TCA	GGT	GTG	CAG	ССТ	GAG	GAC	GAG	GCT	GAG	
RAY4				· · ·							C	T	G		· C ·				T				
SB5/D6				τ							C	T	G		- C -				T				
LSF2	• • •	• • •									C	T	• • G		·C·				T				
JB32	• • •	• • •		• • •	• • •	• • •	• • •				C	T	• • G		- C -				T			C	
					90		CDR-	3					1		100								
Germline V ₂ III	TAT	TAC	TGC	CTG	стс	TAC	TAT	GGT	GGT	GCT	CAG	GTA	TTC	GGC	GGA	GGG	ACC	AAG	сте	ACC	GIC	CT.	Ke-Oze
RAY4			T	Τ		- C -		A		·	- G -	G											Ke.Oz.
SB5/D6				Τ	• • G	- C -		A			- G -	• • G											Ke-Oz.
LSF2				T - A		- C -		AC-		· · C	· G ·	• • G							т				Ke-Oz-
JB32		•т.		T		- C -		A	- C -	- A -	· G ·	G											Ke-07-
												• • • A	·										nermline 1, 2/
																							Berrun 0 751

Figure 1. Nucleotide sequences of the V_{λ} and J_{λ} genes from four hybridoma cell lines (RAY4, SB5/D6, LSF2, JB32), and from the V_{λ} VII germline gene, 4A (33). Numbering is according to Kabat (23). These sequence data are available from EMBL/GenBank Data Libraries under accession numbers M80917 (RAY4), M80918 (SB5/D6), M80915 (LSF2), and M80919 (JB32).

																													CD	A-1							
																			20													30	,				
Germline V1 VII	Q	т	v	v	т	Q	Ε	Ρ	S	L	т	v	S	Ρ	G	G	т	v	т	L	т	С	A	s	s	т	G		v	т	s	G	Y	Y	Р	N	
RAY4	-	A	•	-	-		-	-				-	-	-	-		-	• .	-	-	-		G		-	-		-	-	-			Ĥ	÷		Y	
SB5/D6	-	A	-	-	-	•					-	-	-	-	-	-	-	-					G			-	-	-	-	-			н			Ý	
LSF2							-		-								-		•				Ğ					р					н			÷	
JB32	·	۸	·	·	•	•	•	•	•	·	•	•	•	•	•	·	•	·	·	-	•	-	Ğ	·	•	•	•	Ğ	•	•	•	s	н	-	Å	Ŷ	
																		c	DR-	2																	
					40											50				-						80										70	
Germline V1 VII	w	F	Q	Q	ĸ	P	G	٥		Р	в		L	1	Y	s	т	s	N	к	н	s	w	т	Р		R	F	8	ß	•			6	6	~	
RAY4			-	-				-				Ŧ		÷		Ē			e						÷.				č		v				G	n	~
SB5/D6												÷				Ē			č								-		-	-			÷	•		•	-
LSF2												÷	-	-		-	-				Ň			-		•	•	•	•	•	•	•		•	•	•	•
JB32												÷		-		2	-		•	•		-	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•
UDUL						•	•		•	•		'	•	•	•	-	•		<u> </u>	. <u> </u>		·	•	·	•	•	•	·	·	•	•	-	-	-	•	•	•
																					c	DR.	3														
									80										90	1			· ·														
Germline V, VII		L	т	L	s	G	v	0	P	F	D	F		F	v	Y	С			v.	v	G	G		0	v	F	G	6	6	т	ĸ		т	v		cermine 1.2/
RAY4			÷				Å			-		-	2			1				ė		6		2	, a		11		3	3			-			-	Recound of Si
SB5/D6							1			-		-	-							6		6						•	•	•	•	•	•	•	•	•	
I SE2							2								•	•	•	· ·	•	3	-	7	•	-		•	•	•	•	•	•	•	•	•	•	•	
B22	•	•	•	•	•	•	- 2	•	•	-	-	-	•	÷	•	÷	•		•	3	•	-	:	-		•	•	•	•	•	•	•	•	•	•	•	
0002	•	•	•	•	•	•	^	•	•	•	•	•	•	U	•	۳	•	•	•	3	•	3	•	U	rt.	•	•	•	•	•	-	•	•	•	•	•	

Figure 2. Translated amino acid sequences of V_{λ} and J_{λ} from four hybridoma cell lines (RAY4, SB5/D6, LSF2, JB32), and from the $V_{\lambda}VII$ germline gene, 4A (33). (See Fig. 1.)

These two V_{λ} II-encoded gene segments are 91% homologous to one another, and have in common a number of nucleic acid differences from the V_{λ} 2.1 germline gene (especially in CDRs). Whether they derive from another germline gene, or whether these differences reflect mutation, is unknown.

All four of the V_{λ} VII-encoded antibodies are also encoded by $V_{\rm H}$ III segments closely homologous to the germline gene 9.1 (5). Similar $V_{\rm H}$ segments also encode Ab utilizing other V_{λ} and V_{κ} gene segments (Table II) (manuscript in preparation). It is uncertain whether pairing of 9.1-like $V_{\rm H}$ and V_{λ} VII-encoded heavy and light chains contributes to binding specificity or avidity. JB21 and RC3, also encoded by 9.1-like $V_{\rm H}$ gene segments, but paired with V_{λ} II- and V_{κ} II-encoded light chains, respectively, do not cross-react with K100 PS. All six of the lambda light chains are encoded by a common J_{λ} segment closely homologous to both $J_{\lambda}2$ and $J_{\lambda}3$ germline genes (Fig. 1) (23). $J_{\lambda}2$ is associated with the use of the (Kern⁻Oz⁻)C_{\lambda} segment 2, and $J_{\lambda}3$ with the (Kern⁻Oz⁺)C_{\lambda} segment 3 (37). Each of these J_{λ} segments substitutes the codon GTG for the reported germline sequence GTA at amino acid position 97. Interestingly, this change does not result in an amino acid replacement, and is therefore not of importance in antigen binding. This minor sequence difference may reflect a shared genetic polymorphism, rather than somatic mutation.

The hybridoma RC3 uses a V_x II segment identical to the germline V_x II gene A2, and a J_x 3 segment closely homologous to the germline sequence (Fig. 5) (13). The second kappa hybridoma, ED6.1, is encoded by a member of the V_x I family

20

germline VX2.1 JB21 16M3C8	CAG	тст	GCC	СТ В 	ACT	CAG	ССТ 	GCC 	тсс 	GТG 	тст 	666 	тст 	сст 	G G A 	C A G 	T C G	ATC 	ACC
									C0	R -1			30]	
germine Vλ2.1 JB21 16M3C8	ATC	тсс 	Т G С 	ACT g	GGA 	ACC - G -	AGC	AGT 	GAT C 	GTT 	666 T 	AGT GC-	TAT	AAC 	CTT TA - 	GTC 	тсс 	Т G G 	TAC
				40									ſ	50		00	R-2		
germline VJ.2.1	CAA	CAG	CAC	CCA	GGC	***	GCC	ccc	***	CTC	ATG	ATT	TAT	GAG	agc	AGT	AAG	CGG	ccc
J821 16M3C8		::2									•••	с	[†		т <u>а</u> .			···
					60										70				
germline VJ2.1	TCA	GGG	GTT	тст	AAT	CGC	TTC	тст	GGC	TCC	AAG	TCT	GGC	AAC	ACG	GCC	TCC	CTG	ACA
16M3C8	····								,										
						80										90			
germline VJ2.1	ATC	тст	666	CTC	CAG	GCT	GAG	GAC	GAG	GCT	GAT	TAT	TAC	TGC	TGC	TCA	TAT	GCA	GGT
J821 16M3C8	G					c · ·		•••	•••	•••					Â			AGG	A
			CDR-3]													
germine VX2.1 JB21 16M3C8	AGT C GAC	AGC - C - - C -	ACT GTC	TTA CGG CGG	*GTA G G	TTC 	66C 	G G A G	666 	ACC	A A G A 	СТG 	ACC	6 T C 	СТА 	germline	J <u>)</u> 2/3		

Figure 3. Nucleotide sequences of V_{λ} and J_{λ} genes from two hybridoma cell lines (JB21 and 16M3C8). Also shown is a germline gene V2.1 (34), and germline $J_{\lambda}2/3$ gene (23). An asterisk denotes the beginning of the J_{λ} segment. Numbering is according to Kabat (23). These sequence data are available from EMBL/GenBank Data Libraries under accession numbers M80916 (JB21) and M80921 (16M3C8).

																			20				
germline Vλ2.1 JB21	Q	s	A	L	T ·	Q	Р	A	s	v	S	G	S	Р	G	Q	s	1	T	1	s	c	
16M3C8							-		-	-	•	•	-	-	-	•	-	•	I	-	•	-	
		С	DR-1							30										40			
germline Vλ2.1	T	G	т	S	S	D	v	G	S	Y	N	L	v	s	w	Y	Q	Q	н	Р	G	к	
JB21 16M3C8		-	S	•	-	•	-	•	·	•		• •	•	•		•	•	-	•	•		•	
								50		CC)R-2]			60					
germline Vλ2.1	A	Ρ	к	L	м	1	Y	E	G	s	κ	R	Ρ	s	G	v	s	N	R	F	s	G	
JB21	·	-	•	•	•	•	•	D	v	т	N	•	•	•		•	•	D	-	-	-	•	
16M3C8	-	•	•	•	I	L	•	D	v	Y	1	•	•	•] .	•	•	•	•	•	•	•	
						70										80							
germline Vλ2.1	S	к	s	G	N	т	A	s	L	т	1	s	G	L	Q	A	Е	D	Е	A	D	Y	
JB21 16M3C8	-	•	•	•	•		•	•		-	v	-	-	•	-	P	•		•	•	-	•	
				90			CD)R-3															
germline Vλ2.1	Y	С	C	S	Y	<u>A</u>	G	S	s	т	L	۰۷	F	G	G	G	т	к	L	т	v	L	germline Jλ/2/3
J821 18M2C8	•	•	S	•	•	T	T		Ţ	v	R	•	·	•	•	-	•	•	•	•	•	·	
000000	•	•	Ľ	•	•	R	3	0	1	•	н	•] .	-	•	-	•	-	•	•	•	•	

Figure 4. Translated amino acid sequences of V_{λ} and J_{λ} genes from two hybridoma cell lines (JB21 and 16M3C8). Shown for comparison is the translated sequence of the V_{λ} germline gene $V_{\lambda}2.1$, and $J_{\lambda}2/3$ germline gene. An asterisk denotes the beginning of the J_{λ} segment. (See Fig. 3.)

(36), and uses a J_x4 segment differing from the germline sequence by a single base (Fig. 6). The ED6.1 sequence is identical to the partial amino acid sequence reported previously for 2 kappa antibodies purified from serum (12).

VJ joints of seven of these eight hybridoma V_L genes are notable for the presence of an arginine codon (Fig. 7). Comparison of germline sequences indicates that in the RC3 V_L gene, the codon CGA could only have arisen by the addition of a non-germline-encoded G at the $V_x J_x$ joint. In the V_λ VII-encoded antibodies, the relevant germline V_λ segment is unknown. The arginine codon may be germline-encoded, or result from either mutation or N sequence addition. The VJ splice junction in all lambda antibodies is identical, implying this V_λ/J_λ combination is a necessary prerequisite for generation of the arginine. Since the CDR-3 region encodes the third hypervariable region, the frequent finding of an arginine residue at this location, and particularly its presence in both kappa

Table II. Summary o	f V _H and	V_L Gene S	Segments
---------------------	----------------------	--------------	----------

Hybridoma	V _H Segment	V _L Segment
SB5/D6	V _H III 9.1 (5)	V ₂ VII 4A (33)
RAY4	V _H III 9.1	V ₃ VII 4A
JB32	V _H III 9.1	
JB 21	V _H III 9.1	V ₁ II 2.1 (34)
RC3	V _H III 9.1	V.II A2 (13)
LSF2	V _H III 9.1	V _v VII 4A
16M3C8	V _H III VH26 (35)	V,II 2.1
ED6.1	N.K.	V _x I clone KC-1 (36)

* Columns show name of hybridoma cell line and most closely homologous known germline V_H and V_L segments. Reference for germline shown in parentheses. NK, Not known.

and lambda anti-Hib PS Ab clonotypes, implies this residue is of considerable importance in antigen binding.

Southern blots/analysis of germline $V_{\lambda}VII$ genes

The available repertoire of V_{λ} VII family members was examined by hybridization of human genomic DNA with the $V_{\lambda}VII$ probe generated from LSF2. 10 prominent bands, as well as an additional 5 fainter bands, were demonstrated (Fig. 8). Notably, polymorphism such as the presence or absence of a 5.0-kb fragment, and varying intensity of the 3.5-kb fragment, was demonstrated even within this relatively small sample. The human lambda variable region locus is believed to contain about 60 members, of which 10 are members of the V₂VII family (33, 38). The five less prominent bands may represent members of other V_{λ} families sharing significant homology with the $V_{\lambda}VII$ family. To determine if the V_{λ} VII-encoded antibodies derive from a single germline gene, an oliogonucleotide probe corresponding to conserved $V_{\lambda}VII$ CDR-1 sequence was used to identify a single 3.7-kb genomic DNA fragment. Although more than one V gene may be present in a single restriction fragment, both the repeated isolation of highly homologous $V_{\lambda}VII$ genes, and the single prominant band detected with the oligonucleotide probe, suggests that a single V_{λ} gene may be responsible for the generation of lambda anti-Hib PS Ab that cross-reacts with K100 PS (Fig. 9). Less prominant higher molecular weight bands are also present, but hybridize weakly to the oligomer after subtraction of nonspecific background binding by high molecular weight DNA.

Discussion

To examine the molecular basis of the immune response to Hib PS, a panel of hybridomas secreting human monoclonal anti-Hib PS Ab has been developed. Our previous studies showed exclusive use of members of the V_{H} III gene family in this im-

germline RC3	A2	D GAT	ו ATT 	V GTG 	M ATG	T ACC	Q CAG	T ACT	P CCA	L CTC	S 10 TCT	L CTG 	s TCC 	V GTC	T ACC	Р ССТ 	G GGA 	Q CAG 	P CCG	A GCC	s TCC 	I ATC	S 20 TCC	C TGC	K AAG
germline RC3	A2	<u>s</u> tct	S AGT	Q CAG	S (AGC 	L CDR - CTC	L CTG	H CAT	S AGT	D GAT	G GGA	K 30 AAG	T ACC	ү ТАТ 	L TTG 	Y TAT 	W TGG	Y TAC	L CTG 	Q CAG	K AAG	P 40 CCA	G GGC 	Q CAG	Р ССТ
germline RC3	A2	P CCA 	Q CAG	L CTC 	L CTG 	I ATC	Y TAT	E 50 GAA 	V GTT 	S CI TCC 	N DR-2 AAC	R CGG 	F TTC 	s TCT 	G GGA 	V GTG 	P CCA 	D 60 GAT	R AGG	F TTC 	S AGT	G GGC	S AGC	G GGG 	S TCA
germline RC3	A2	G GGG 	T ACA	D 70 GAT	F TTC	T ACA	L CTG	K AAA 	I ATC	S AGC	R CGG 	V GTG 	E 80 GAG 	A GCT	E GAG	D GAT	V GTT	G GGG 	V GTT	у ТАТ 	Y TAC	с тас 	<u>M</u> ATG	Q 90 CAA 	S AGT
		J	Q	ι	P	R	F	•	T	F	G	P	G	т	ĸ	v	D	1	к	R					

					_	_			•	-		-				-						
				CDR - 3	3																	
germline A2	ATA	CAG	CTT	ССТ	С	٠	TTC	ACT	TTC	GGC	ССТ	GGG	ACC	AAA	GTG	GAT	ATC	AAA	CGT	germline	3 يرا	
RC3	• • •	• • •	• • •	• • •	• GA		- GG	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • A			

Figure 5. Nucleotide sequences of V_x and J_x genes from the hybridoma cell line RC3. Also shown is the translated amino acid sequence of the RC3 V_x gene. Shown for comparison is the nucleotide sequence of a germline V_x gene, A2 (13), and germline J_x 3 gene. An asterisk denotes the beginning of the J_x segment. Numbering is according to Kabat (23). This sequence data is available from EMBL/GenBank Data Libraries under accession number M80914 (RC3).

	D	I	Q	м	т	Q	S	Ρ	S	S 10	L	S	A	S	v	G	D	R	
ED6.1	GAC	ATC	CAG	ATG	ACC	CAG	тст	CCA	TCC	тсс	CTG	тст	GCA	тст	GTA	GGA	GAC	AGA	
	v	Ŧ		в	c	Б	•	e	0	e		e	e	v		N		v	
	v	20		r	U	<u> </u>		5	<u>v</u>	CDR - 1		30		•	-		1 "		
ED6.1	GTC	ACC	ATC	ССТ	TGC	CGG	GCA	AGT	CAG	AGC	ATT	AGC	AGC	TAT	TTG	AAT	TGG	TAT	
	Q	н	к	Ρ	G	к	A	Ρ	۷	L	L	I.	L	D	т	s	N	L	
				40										50				CDR - 2	
ED6.1	CAG	CAC	AAA	CCA	GGG	AAA	GCC	CCT	GTG	CTC	CTC	ATC	TTA	GAT	ACA	TCC	AAT	TTA	
	Q	s	G	v	Ρ	S	R	F	s	G	s	G	s	G	т	D	F	т	
ED6.1	CAA	AGT	GGG	GTC	CCA	60 TCA	AGG	ттс	AGT	GGC	AGT	GGA	тст	GGG	ACA	70 GAT	ттс	ACT	
			1																
	L	т	I.	s	S	L	Q	P	E	D	F	A	т	Y	Y	c	Q	Q	
ED6.1	СТС	ACC	ATC	AGC	AGT	CTG	CAA	80 CCT	GAA	GAT	TTT	GCA	ACT	TAC	TAC	TGT	CAA	90 CAG	
	e	v	Ŧ		в		Ŧ	F	G	G	c	Ŧ	ĸ	v	-		ĸ	в	
			CDR - 3		٢	L		וי	a	u	a	1	'n		Ľ		r.	n	
ED6.1	AGT	TAC	ACT	СТС	CCG	•CTC	ACT	TTC	GGC	GGA	GGG	ACC	AAG	GTG	GAG	ATC	AAA	CGA ••T	oermli

Figure 6. Nucleotide sequence of V_{ϵ} and J_{ϵ} genes from hybridoma cell line ED6.1. Also shown is the translated amino acid sequence of the ED6.1 V_{ϵ} gene. An asterisk denotes the beginning of the J_{ϵ} segment. Numbering is according to Kabat (23). This sequence data is available from EMBL/GenBank Data Libraries under accession number M80920 (ED6.1).

Figure 7. Translated amino acid sequences of VJ joints from seven hybridoma cell lines (RC3, ED6.1, RAY4, SB5/ D6, LSF2, JB21, and 16M3C8). Also shown are translated amino acid sequences of the germline V_x gene A2, and germline J_x3 , J_x4 , and $J_x2/3$ genes. (See Figs. 2, 4, and 6.)

mune response, and the apparent restriction to two or three germline V_H genes. In contrast, V_L gene usage is more complex, with antibody encoded by a number of V_{λ} and V_{κ} families (12). Analysis of light chain variable region genes obtained from cell lines selected to represent various characteristics of serum antibodies showed that despite diversity in the variety of light chain variable region gene segments utilized, most serum anti-Hib PS Abs may be encoded by a limited number of V_{κ} and V_{λ} germline genes.

Figure 8. Southern blot analysis for V_{λ} VII family members in BamHI-digested human genomic DNA. Lane 12 contains genomic DNA from the subject from whom hybridoma LSF2 was obtained. Lane 9 contains genomic DNA from a parent of LS. The remaining 10 donors are unrelated. An arrow indicates the 3.7-kb fragment which is identified by the oligonucleotide probe illustrated in Fig. 9.

The light chain distribution of anti-Hib PS Ab is characterized by a predominance of kappa light chains, although some individuals predominantly or exclusively express lambda light chains (39, 40). Scott et al. have shown that V_x II light chains are the most commonly expressed light chains among clonally purified serum anti-Hib PS antibodies from adults with high responses to immunization. Limited amino acid sequences of a number of these serum antibodies showed that greater than 60% of subjects immunized with plain Hib PS produce antibody encoded by a V_x II family member, and further, that a number of these antibodies show identical amino acid homology with the translated amino acid sequence of the germline V_x II gene A2 (12, 13). Lucas et al. have described an anti-idiotypic monoclonal antibody (Hibid-1) that identifies anti-Hib PS antibodies expressing this light chain (16). On average, 60%

Figure 9. Dried gel hybridization of BamHI-digested human genomic DNA with an oligonucleotide probe corresponding to conserved V_{λ} VII hybridoma CDR-1 sequences. Genomic DNA in lanes 1, 4, 5, 6, 7, 9 and 10 of Fig. 8 corresponds to that in lanes 2, 7, 4, 8, 10, 5 and 9 of Fig. 9, respectively.

of the total anti-Hib PS antibody of most children and adults immunized with either Hib PS or Hib PS-conjugate vacine expresses this idiotype (15, 16). Taken together, this suggests the most common clonotype of anti-Hib PS Ab is encoded by a single V_x II gene. The V_x locus contains approximately 50 functional genes, of which 40% are members of the V_x II family (41). The V_x II A2 germline gene is known to be present in a single copy (13). Our findings definitively demonstrate that at least a portion of V_x II-encoded antibodies are encoded by unmutated germline elements. Our subject R.C. was immunized with PS-protein conjugate vaccine, whereas Scott's subjects were immunized with the plain PS vaccine. Thus it is possible that the unmutated V_x II A2 segment is utilized irrespective of antigen presentation in a T-independent or T-dependent form.

Lambda variable region gene usage appears similarly restricted. The majority of lambda-expressing anti-Hib PS Ab in adults with high antibody responses to vaccine cross-reacts with E. coli K100 PS (17). The capsular polysaccharides of Hib and E. coli K100 are structurally similar and gastrointestinal colonization with E. coli K100 induces antibody to Hib PS in humans (42). "Naturally occurring" anti-Hib PS Ab in children commonly cross-reacts with K100 PS, whereas Ab of individuals immunized with Hib PS or responding to Hib infection is less frequently cross-reactive (18). The kappa/lambda ratio of natural anti-Hib PS Ab is lower in infants than in older children, and in the vaccine-induced antibody of adults (39). Further, Hibid-1 (the CRI associated with expression of the V.II light chain) is expressed less frequently and comprises a smaller proportion of total anti-Hib PS Ab in preimmune compared with postimmunization sera. Expression of Hibid-1 following immunization is similar in adults and children. These results imply that cross-reactive antigens may induce the natural antibody of children. K100 PS-cross-reactive antibody may provide protective immunity in young children upon first exposure to Hib. These cross-reactive antibodies appear to be subsequently replaced or dominated by antibody specific for Hib PS when individuals are exposed to this antigen by immunization, colonization, or infection. We demonstrate that cross reactivity of lambda antibodies may be mediated through a single light chain germline gene. The mechanism for the clonal dominance of the V.II antibodies is unclear; the avidity for Hib PS of these K100 PS-cross-reactive antibodies from adults is similar to that of Hib specific PS antibodies (P. Shackelford, unpublished observation).

Lambda antibodies expressing the $V_{\lambda}II$ gene did not crossreact with *E. coli* K100 PS. Whether all noncross-reactive antibodies are encoded by closely related members of the $V_{\lambda}II$ gene family will require further characterization of additional antibodies.

By the age of about 5 yr most individuals have acquired protective anti-Hib PS Ab. All of the hybridomas in this study were derived from older children or adults, who had detectable preimmunization antibody. The B cells immortalized by fusion, therefore, most likely represent a secondary immune response. Despite this, V_H gene segments obtained from these hybridomas appear to be relatively unmutated (14), and it appears that some V_L genes are similarly conserved. The RC3 V_x gene segment is identical to the A2 germline gene, and although the pertinent $V_\lambda VII$ germline gene is not known, the paucity of differences in $V_\lambda VII$ segments from four different subjects suggests these gene segments are relatively unmutated. J_e and J_h segments are also highly homologous to germline elements. Thus, at least a portion of the anti-Hib PS response represents the use of unmutated germline elements.

VJ joints of the majority of rearranged V_L genes also appear to be an additional source of restriction in the anti-Hib PS immune response. Although there is variability in the use of J, segments, V, II-encoded V, genes are characterized by the presence of an arginine at amino acid position 95a (13). In the RC3 V_L gene and at least one of the antibodies (B-G2a) described by Scott, this appears to have arisen by N sequence addition. In four other kappa antibodies described by Scott, alternative joining may have generated this invariant arginine (13). All of the lambda V_L genes in the present study are similarly characterized by an invariant arginine-96. The germline V_{λ} VII segment is not known; therefore the mechanism used to generate this codon is uncertain. The invariant presence of this residue in many anti-Hib PS Abs supports the previous suggestion that it may be of great importance in antigen binding (13). This also is supported by studies of the murine anti-p-azophenylarsonate (Ars) response. Anti-Ars light chains also contain an invariant arginine at position 96, encoded by intracodonic splicing of a single V, $(V_10$ -Ars) and a single J, (J_1) segment (43). This arginine is essential for Ars binding, and the substitution of tyrosine for arginine has been shown to abolish binding (44). The presence of arginine residues clustered within the CDR's of the heavy chains of murine anti-DNA antibodies correlates with increased affinity, and the arginine requirement in the anti-Hib PS response may indicate its participation in the recognition of the similar phosphate-ester linkage of the repeating carbohydrate moiety (45). Thus, although diversity exists in the use of a variety of V and J segments, certain VJ combinations, which produce arginine codons by junctional flexibility or N segment addition, may be strongly selected.

Does the restricted nature of V_H and V_L segment usage in the human anti-Hib PS response explain the age-related acquisition of immunity to this organism? In both mice and humans, preferential use of certain V_H gene segments is observed in early development. In mice, biased usage of J_H-proximal V_H gene segments occurs in fetal and neonatal animals (46, 47). Developmental regulation of V_L gene usage is less extensively studied than V_H genes. Teale and Morris noted preferential expression of certain V, families in LPS-stimulated murine fetal B cells compared to adult B cells, with no evidence for position-dependent bias (48). Kaushik et al. also described nonstochastic use of V, families in adult mice, suggesting molecular constraints may persist beyond the neonatal period (49). Two or three V_H gene segments, and a single V_{λ} and a single V_{λ} gene segments, appear to encode a large proportion of anti-Hib PS Ab in immune subjects. The use of highly conserved V gene segments in human anti-Hib PS response may place considerable restraints on the immune response. The inability to utilize these genes, whether due to chromosomal position or other molecular constraints, may be responsible for the age-related susceptibility to Hib infection. The lack of somatic hypermutation in a portion of these antibodies would also place greater dependence on the germline repertoire, in that it may be impossible to improve antibody affinity by antigen-driven selection of favorable mutations. The absence or polymorphism of these genes also may contribute to individual and ethnic susceptibility to invasive Hib disease. In addition, the repertoire differences detected in some individuals (such as the absence of kappa antibody, or the absence of the V_III-associated CRI) may be explained by the use of other minor light chains. An individual missing the A2 germline gene has been described, although the functional implications of such a deletion are not known (13).

Expression of certain V_H gene family members in mice is correlated with B cell subpopulations (50). An alternative explanation for the poor response to plain Hib PS may be a maturational delay in recruitment of a critical B cell population that selectively expresses important variable region gene segments. We and others note that an arginine is expressed at the VJ joint in the great majority of anti-Hib PS light chains. In some circumstances N segment addition is required to generate this codon. The addition of these extra nucleotides is infrequent in light chain recombination, suggesting that these B cell precursors may be relatively infrequent (51). Moreover, N segment addition also appears to be developmentally regulated. Neonatal murine B cells lack N sequences, and their presence in heavy chain recombination increases with time (52). In addition, N sequence addition may also correlate with certain B cell subsets. N segments appear to be rare in Ly1-B cell-derived populations (53).

In contrast to plain polysaccharide vaccines, most young infants respond well to the newer Hib-PS protein conjugate vaccines (54). It is presently unknown if this antigen formulation recruits an alternative antibody repertoire, or if, by an uncertain mechanism, developmental restriction of a "dormant" B cell subset is overcome. To address this question, V gene expression in infants must be examined.

Acknowledgments

The authors thank Drs. Moon H. Nahm, Dan M. Granoff, Alan L. Schwartz, and Harvey R. Colten for helpful discussion and review of this manuscript, and Mrs. Darlene Bradley for preparation of the manuscript.

This work was supported by the Lattner Foundation, the Allison Hope Hollenbeck Fund, grant 61 from the March of Dimes, the Markey Center in Molecular Biology of Human Diseases at Washington University, grant R01 A119350 and AI17217 from the National Institutes of Allergy and Infectious Diseases, grant RR-36 from the General Clinical Research Center, National Institutes of Health, and a Pediatric Fellowship Award (E. E. Adderson) from Connaught Laboratories, Inc.

References

1. Tonegawa, S. 1983. Somatic generation of antibody diversity. Science (Wash. DC). 302:575-581.

 Akira, S., K. Okazaki, and H. Sakano. 1987. Two pairs of recombination signals are sufficient to cause immunoglobulin V-(D)-J joining. Science (Wash. DC). 238:1134–1138.

3. Alt, F. W., T. K. Blackwell, and C. D. Yancopoulos. 1987. Development of the primary antibody repertoire. *Science (Wash. DC)*. 298:1079-1087.

 French, D. L., R. Laskov, and M. D. Scharff. 1989. The role of somatic hypermutation in the generation of antibody diversity. *Science (Wash. DC)*. 244:1152–1157.

5. Berman, J. E., S. J. Mellis, R. Pollock, C. L. Smith, H. Suh, B. Heinke, C. Kowal, U. Surti, L. Chess, C. R. Cantor, et al. 1988. Content and organization of the human IgV_H locus: definition of three new V_H families and linkage to the IgC_H locus. *EMBO (Eur. Mol. Biol. Organ.) J.* 7:727-738.

6. Krawinkel, V., T. Christoph, and T. Blankenstein. 1989. Organization of the Ig $V_{\rm H}$ locus in mice and humans. *Immunol. Today.* 10:339-344.

7. Straubinger, B., E. Huber, W. Lorenz, E. Osterholzer, W. Pargent, M. Pech, H.-D. Pohlenz, F.-J. Zimmer, and H. G. Zachau. 1988. The human V. locuscharacterization of a duplicated region encoding 28 different immunoglobulin genes. J. Mol. Biol. 199:23-34.

8. Robbins, J. B., J. C. Parke, Jr., R. Schneerson, and J. K. Whisnant. 1973. Quantitative measurement of "natural" and immunization-induced *Haemophilus influenzae* type b capsular antibodies. *Pediatr. Res.* 7:103-110. 9. Ward, J. J., H. S. Margolis, M. K. Lum, D. W. Fraser, and T. R. Bender. 1981. *Haemophilus influenzae* disease in Alaskan Eskimos: Characteristics of a population with an unusual incidence of invasive disease. *Lancet.* 1:1281-1285.

10. Coulehan, J. L., R. H. Michaels, C. Hallowell, R. Schults, T. K. Welty, and J. S. C. Kuo. 1984. Epidemiology of *Haemophilus influenzae* type b disease among Navajo Indians. *Public Health Rep.* 99:404–409.

11. Granoff, D. M., P. G. Shackelford, B. K. Suarez, M. H. Nahm, K. L. Cates, T. V. Murphy, R. Karasic, M. T. Osterholm, J. P. Pandey, and R. S. Daum. 1986. *Haemophilus influenzae* type b disease in children vaccinated with type b polysaccharide vaccine. *N. Engl. J. Med.* 315:1584–1590.

12. Scott, M. G., J. J. Tarrand, D. L. Crimmins, D. W. McCourt, N. R. Siegel, C. E. Smith, and M. H. Nahm. 1989. Clonal characterization of the human IgG antibody repertoire to *Haemophilus influenzae* type b polysaccharide. II. IgG antibodies contain V_H genes from a single V_H family and V_L genes from at least four V_L families. J. Immunol. 143:293–298.

13. Scott, M. G., D. L. Crimmins, D. W. McCourt, I. Zocher, R. Thiebe, H. G. Zachau, and M. H. Nahm. 1989. Clonal characterization of the human IgG antibody repertoire to *Haemophilus influenzae* type b polysaccharide. III. A single V₄II gene and one of several J_k genes are joined by an invariant arginine to form the most common L chain V region. J. Immunol. 143:4110-4116.

14. Adderson, E. E., P. G. Shackelford, A. Quinn, and W. L. Carroll. 1991. Restricted immunoglobulin heavy chain V gene usage in the human antibody response to *Haemophilus influenzae* type b capsular polysaccharide. J. Immunol. 147:1667-1674.

15. Lucas, A. H., and D. M. Granoff. 1990. A major cross-reactive idiotype associated with human antibodies to the *Haemophilus influenzae* type b capsular polysaccharide. J. Clin. Invest. 85:1158–1166.

16. Lucas, A. H., R. J. Langley, D. M. Granoff, M. H. Nahm, M. Y. Kitamura, and M. G. Scott. An idiotypic marker associated with the germ-line encoded kappa light chain variable region that predominates the vaccine-induced human antibody response to the *Haemophilus influenzae* b polysaccharide. J. Clin. Invest. 88:1811-1818.

17. Tarrand, J. J., M. G. Scott, P. A. Takes, and M. H. Nahm. 1989. Clonal characterization of the human IgG antibody repertoire to *Haemophilus influenzae* type b polysaccharide. J. Immunol. 142:2519-2526.

18. Insel, R. A., and P. W. Anderson. 1982. Cross-reactivity with *Escherichia coli* K100 in the human serum anticapsular antibody response to *Haemophilus influenzae* type b. J. Immunol. 128:1267-1270.

19. Granoff, D. M., P. G. Shackelford, J. P. Pandey, and E. G. Boies. 1986. Antibody responses to *Haemophilus influenzae* type b polysaccharide vaccine in relation to the Km(1) and G2m(23) immunoglobulin allotypes. J. Infect. Dis. 154:257-264.

20. Shackelford, P. G., D. M. Granoff, S. J. Nelson, M. G. Scott, D. S. Smith, and M. H. Nahm. 1987. Subclass distribution of human antibodies to *Haemophilus influenzae* type b capsular polysaccharide. J. Immunol. 138:587-592.

21. Gigliotti, F., L. Smith, and R. A. Insel. 1984. Reproducible production of protective monoclonal antibodies by fusion of peripheral blood lymphocytes with a mouse myeloma cell line. J. Infect. Dis. 149:43-47.

22. Chirgwin, J. M., A. K. Przybyla, R. J. MacDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonucleic acid and from sources enriched in ribonuclease. *Biochemistry*. 18:5294-5299.

 Kabat, E. A., T. T. Wu, M. Reid-Miller, H. M. Perry, and K. S. Gottesman. 1987. Sequence of Proteins of Immunological Interest. U.S. Public Health Service, Bethesda, MD.

24. Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science (Wash. DC)*. 239:487-491.

25. Larrick, J. W., L. Danielsson, C. A. Brenner, E. F. Wallace, M. Abrahamson, K. E. Fry, and C. A. K. Borrebaeck. 1989. Polymerase chain reaction using mixed primers: cloning of human monoclonal antibody variable region genes from single hybridoma cells. *Biotechnology*, 7:934–938.

26. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 79:5463-5467.

27. Davis, L. G., M. D. Dibner, and J. F. Battey. 1986. Preparation of DNA from eukaryotic cells: General method. *In* Basic Methods of Molecular Biology.

L. G. Davis, M. D. Dibner, and J. F. Battey, editors. Elsevier, New York. 44–46. 28. Feinberg, A. P., and B. Vogelstein. 1983. Technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. *Anal. Biochem.* 132:6-13.

29. Hellman, L., and V. Petterson. 1987. Analysis of closely related genes by the use of synthetic oligonucleotide probes labelled to a high specific activity. *Gene Anal. Tech.* 4:9-13.

30. Tsao, S. G., C. F. Brunk, and R. E. Pearlman. 1983. Hybridization of nucleic acids directly in agarose gels. *Anal. Biochem.* 131:365-372.

31. Miyada, C. G., C. Klofelt, A. A. Reyes, E. McLaughlin-Taylor, and R. B. Wallace. 1985. Evidence that polymorphism in the murine major histocompatibility complex may be generated by an assortment of subgene sequences. *Proc. Natl. Acad. Sci. USA* 82:2890–2894.

32. Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the Vax. *Nucleic Acids Res.* 12:387-395.

33. Anderson, M. L. M., M. F. Szajnert, J. C. Kaplan, L. McColl, and B. D. Young. 1984. The isolation of a human Ig V_{λ} gene from a recombinant library of chromosone 22 and estimation of the copy number. *Nucleic Acids Res.* 12:6647–6660.

34. Brockley, F., D. Alexandre, P. Chuchana, S. Huck, G. Lefranc, and M.-P. Lefranc. 1989. First nucleotide sequence of a human immunoglobulin variable λ gene belonging to subgroup II. *Nucleic Acids Res.* 10:3976.

35. Chen, P. P., M., Liu, S., Sinha, and D. A. Carson. 1988. A 16/6 idiotypepositive anti-DNA antibody is encoded by a conserved V_H gene with no somatic mutation. *Arthritis Rheum.* 31:1429–1431.

36. Kato, S., K. Tachibana, N. Takayama, H. Kataoka, M. Yoshida, and T. Takano. 1991. Genetic recombination in chromosomal translation t(2;8)(p11;q24) of a Burkitt's lymphoma cell line, KOBK101. *Gene (Amst.)*. 97:239-244.

37. Udey, J., and B. Blomberg. 1987. Human λ light chain locus: Organization and DNA sequences of three genomic J regions. *Immunogenetics*. 25:63-70.

38. Chuchana, P., A. Blancher, F. Brockly, D. Alexandre, G. Lefranc, and M.-P. Lefranc. 1990. Definition of the human immunoglobulin variable lambda (IGLV) gene subgroups. *Eur. J. Immunol.* 20:1317-1325.

39. Ambrosino, D. M., W. Greif, C. Thompson, and G. R. Siber. 1990. κ and λ light chain composition of antibody to the capsular polysaccharide of *Haemophilus influenzae* type b. J. Infect. Dis. 161:922–925.

40. Insel, R. A., P. Anderson, M. E. Pichichero, S. Schuster, M. D. Amster, G. Ekborg, and D. H. Smith. Anticapsular antibody to *Haemophilus influenzae*. *In* Haemophilus Influenzae. S. H. Sell and P. F. Wright, editors. Elsevier, New York. 115–168.

 Meindl, A., H. G. Klobeck, R. Ohnheiser, and H. G. Zachau. 1990. The V_K gene repertoire in the human germ line. *Eur. J. Immunol.* 20:1855–1863.

42. Schneerson, R., and J. B. Robbins. 1975. Induction of serum *Haemophilus influenzae* type b capsular antibodies in adult volunteers fed cross-reacting *Escherichia coli* 075:K100:H5. *N. Engl. J. Med.* 292:1093-1096.

43. Sanz, I., and J. D. Capra. 1987. Ve and Je gene segments of A/J Ars-A antibodies: Somatic recombination generates the essential arginine at the junc-

tion of the variable and joining regions. Proc. Natl. Acad. Sci. USA 84:1085-1089.

44. Jeske, D. J., J. Jarvis, C. Milstein, and J. D. Capra. 1984. Junctional diversity is essential to antibody activity. J. Immunol. 133:1090-1092.

45. Shlomchik, M., M. Mascelli, H. Shan, M. Z. Radic, D. Pisetsky, A. Marshak-Rothstein, and M. Weigert. 1990. Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J. Exp. Med. 171:265-297.

46. Yancopoulos, G. D., S. V. Desiderio, M. Paskind, J. F. Kearney, D. Baltimore, and F. W. Alt. 1984. Preferential utilization of the most JH-proximal $V_{\rm H}$ gene segments in pre-B-cell lines. *Nature (Lond.)*. 311:727-733.

47. Perlmutter, R. M., J. F. Kearney, S. P. Chang, and L. E. Hood. 1985. Developmentally controlled expression of immunoglobulin V_H genes. *Science (Wash. DC).* 227:1597-1601.

48. Teale, J. M., and E. G. Morris. 1989. Comparison of V, gene family expression in adult and fetal B cells. J. Immunol. 143:2768-2772.

49. Kaushik, A., D. H. Schulze, C. Bona, and G. Kelsoe. 1989. Murine V_{κ} gene expression does not follow the V_{H} paradigm. J. Exp. Med. 169:1859–1864.

50. Jeong, H. D., and J. M. Teale. 1990. Contribution of the CD5⁺ B cell to D-proximal V_H family expression early in ontogeny. J. Immunol. 145:2725-2729.

51. Carroll, W. L., C. O. Starnes, R. Levy, and S. Levy. 1988. Alternative V_{\star} gene rearrangements in a murine B cell lymphoma. An explanation for idiotypic heterogeneity. J. Exp. Med. 168:1607–1620.

52. Feeney, A. J. 1990. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J. Exp. Med. 172:1377-1390.

53. Gu, H., I. Forster, and K. Rajewsky. 1990. Sequence homologies, N sequence insertion and J_H gene utilization in $V_H DJ_H$ joining: implications for the joining mechanism and the ontogenic timing of Ly1 B cell and B-CLL progenitor generation. *EMBO (Eur. Mol. Biol. Organ.) J.* 9:2133–2140.

54. Eskola, J., H. Kayhty, H. Peltola, V. Karanko, P. H. Makela, J. Samuelson, and L. K. Gordon. 1985. Antibody levels achieved in infants by course of *Haemophilus infleunzae* type b polysaccharide/diphtheria toxoid conjugate vaccine. *Lancet.* 1:1184–1186.