Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Impaired elastin fiber assembly related to reduced 67-kD elastin-binding protein in fetal lamb ductus arteriosus and in cultured aortic smooth muscle cells treated with chondroitin sulfate.
A Hinek, R P Mecham, F Keeley, M Rabinovitch
A Hinek, R P Mecham, F Keeley, M Rabinovitch
View: Text | PDF
Research Article

Impaired elastin fiber assembly related to reduced 67-kD elastin-binding protein in fetal lamb ductus arteriosus and in cultured aortic smooth muscle cells treated with chondroitin sulfate.

  • Text
  • PDF
Abstract

In the fetal ductus arteriosus (DA) disruption in the assembly of elastin fibers is associated with intimal thickening and we previously reported that fetal lamb DA smooth muscle cells incubated with endothelial conditioned medium produce two-fold more chondroitin sulfate (CS) compared with aorta (Ao) cells (Boudreau, N., and M. Rabinovitch. 1991. Lab. Invest. 64:187-199). We hypothesized that CS or dermatan sulfate (DS), both N-acetylgalactosamine glycosaminoglycans (GAGs), may be similar to free galactosugars in causing release of the 67-kD elastin binding protein (EBP) from the smooth muscle cell surfaces and impaired elastin fiber assembly. Using immunohistochemistry, immunoelectron microscopy, and western immunoblot we demonstrated a reduction in the 67-kD EBP in fetal lamb DA smooth muscle in tissue and in cultured cells. Also, reduced EBP was observed in fetal lamb and neonatal rat Ao smooth muscle cells incubated with N-acetylgalactosamine GAGs, CS, and DS, but not with N-acetylglucosamine containing GAGs, heparan sulfate (HS), or hyaluronan. Reduction in EBP was related to shedding from cell surfaces into the conditioned medium. This was associated with impaired elastin fiber assembly in cultured cells, assessed both morphologically and by a relative increase in tropoelastin and decrease in desmosines. The EBP extracted from smooth muscle cell membranes binds to an elastin affinity gel and can be eluted from it with CS but not with HS. Moreover, the amount of EBP extractable from smooth muscle cell membranes correlated with the morphologic assessment. We propose that increased CS or DS, may impair assembly of newly synthesized elastin in the media of the ductus arteriosus associated with the development of intimal thickening.

Authors

A Hinek, R P Mecham, F Keeley, M Rabinovitch

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 217 11
PDF 55 9
Figure 0 11
Scanned page 427 7
Citation downloads 67 0
Totals 766 38
Total Views 804
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts