Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Mutations of P450c21 (steroid 21-hydroxylase) at Cys428, Val281, and Ser268 result in complete, partial, or no loss of enzymatic activity, respectively.
D A Wu, B C Chung
D A Wu, B C Chung
Published August 1, 1991
Citation Information: J Clin Invest. 1991;88(2):519-523. https://doi.org/10.1172/JCI115334.
View: Text | PDF
Research Article

Mutations of P450c21 (steroid 21-hydroxylase) at Cys428, Val281, and Ser268 result in complete, partial, or no loss of enzymatic activity, respectively.

  • Text
  • PDF
Abstract

Steroid 21-hydroxylase deficiency is the major cause of congenital adrenal hyperplasia (CAH), a common genetic disease. To define the relationship between gene mutations and enzyme deficiency, we generated missense mutations of the 21-hydroxylase cDNA at three different sites and characterized the mutant proteins after expressing them in cultured mammalian and yeast cells. Among them, Ser268 and Val281 have been found to be mutated in CAH patients, whereas Cys428 has been implicated as the heme ligand. Our results show mutations at these sites result in complete, partial, or no loss of the enzymatic activity. All the Cys428 mutants had neither enzymatic activity nor P450 absorption, thus supporting the notion that Cys428 is the heme ligand. All the 268-mutants exhibited the same activity as normal 21-hydroxylase, demonstrating that the clinically observed Ser268----Thr change represents a polymorphism rather than the cause of the enzyme deficiency. The 281-mutants had normal Km but greatly reduced Vmax values that also paralleled the reduction in the heme content, in the order Val281 (normal, 100%) greater than Ile281 (50%) greater than Leu281 (20%) greater than Thr281 (10%). Our findings suggest that the methyl group at the beta-carbon of Val281 is required for heme incorporation and consequently enzymatic activity.

Authors

D A Wu, B C Chung

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts