Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Transcellular water flow modulates water channel exocytosis and endocytosis in kidney collecting tubule.
M Kuwahara, … , F Marumo, A S Verkman
M Kuwahara, … , F Marumo, A S Verkman
Published August 1, 1991
Citation Information: J Clin Invest. 1991;88(2):423-429. https://doi.org/10.1172/JCI115321.
View: Text | PDF
Research Article

Transcellular water flow modulates water channel exocytosis and endocytosis in kidney collecting tubule.

  • Text
  • PDF
Abstract

The regulation of osmotic water permeability (Pf) by vasopressin (VP) in kidney collecting tubule involves the exocytic-endocytic trafficking of vesicles containing water channels between an intracellular compartment and apical plasma membrane. To examine effects of transcellular water flow on vesicle movement, Pf was measured with 1-s time resolution in the isolated perfused rabbit cortical collecting tubule in response to addition and removal of VP (250 microU/ml) in the presence of bath greater than lumen (B greater than L), lumen greater than bath (L greater than B), and lumen = bath (L = B) osmolalities. With VP addition, Pf increased from 12 to 240-270 x 10(-4) cm/s (37 degrees C) in 10 min. At 1 min, Pf was approximately 70 x 10(-4) cm/s for B greater than L, L greater than B, and L = B conditions. At later times, Pf increased fastest for L greater than B and slowest for B greater than L osmolalities; at 5 min, Pf was 250 x 10(-4) cm/s (L greater than B) and 158 x 10(-4) cm/s (B greater than L). With VP removal, Pf returned to pre-VP levels at the fastest rate for B greater than L and the slowest rate for L greater than B osmolalities; at 30 min, Pf was 65 x 10(-4) cm/s (B greater than L) and 183 x 10(-4) cm/s (L greater than B). For a series of osmotic gradients of different magnitudes and directions, the rates of Pf increase and decrease were dependent upon the magnitude of transcellular volume flow; control studies showed that paracellular water flux, asymmetric transcellular water pathways, or changes in cell volume could not account for the data. VP-dependent endocytosis was measured by apical uptake of rhodamine-dextran; in paired studies where the same tubule was used for + and - gradients, B greater than L and L greater than B osmolalities gave 168% and 82% of uptake measured with no gradient. In contrast, endocytosis in proximal tubule was not dependent on gradient direction. These data provide evidence that transcellular volume flow modulates the vasopressin-dependent cycling of vesicles containing water channels, suggesting a novel driving mechanism to aid or oppose the targeted, hormonally directed movement of subcellular membranes.

Authors

M Kuwahara, L B Shi, F Marumo, A S Verkman

×

Full Text PDF

Download PDF (1.53 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts