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Abstract Introduction

Muscle is an important target tissue for insulin-like growth
factor (IGF) action. The presence of specific, high affinity IGF
receptors, as well as the expression of IGF peptides and bind-
ing proteins by muscle suggest that a significant component of
IGF action in this tissue is mediated through autocrine and/or
paracrine mechanisms. To explore autocrine/paracrine action
of IGFs in muscle, we studied the regulation of the IGF-I recep-
tor and the expression of IGF peptides during differentiation of
the mouse BC3H-1 muscle cell line. Differentiation from myo-
blasts to myocytes was associated with a 60%decrease in IGF-I
receptor sites determined by Scatchard analysis. Analysis of
mRNAabundance and protein labeling studies indicated that
the decrease in IGF-I receptor sites was associated with similar
reductions in IGF-I receptor gene expression and receptor bio-
synthesis. IGF-II peptide gene expression was detected in myo-
blasts and increased 15-fold with differentiation; the increase in
IGF-II gene expression preceded the decrease in IGF-I recep-
tor gene expression. In contrast, IGF-I peptide gene expression
was low in myoblasts and decreased slightly with differentia-
tion. To explore the potential role of endogenous IGF-II in the
differentiation-associated decrease in IGF-I receptor expres-
sion, we investigated the effects of IGF-II treatment in myo-
blasts. The addition of IGF-II to undifferentiated myoblasts
resulted in downregulation of the IGF-I receptor which was
associated with decreased IGF-I receptor biosynthesis and de-
creased IGF-I receptor mRNAabundance. These studies sug-
gest, therefore, that IGF-I receptor expression during muscle
cell differentiation may be regulated, at least in part, through
autocrine production of IGF-II. (J. Clin. Invest. 1991.
87:1212-1219.) Key words: insulin-like growth factor I recep-
tor * insulin-like growth factor II - muscle cell differentiation-
downregulation - gene expression
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Insulin-like growth factor (IGF)-I,1 IGF-II, and insulin are dis-
tinct members of a family of peptide hormones with a broad
range of metabolic and mitogenic actions (1, 2). While it is well
established that muscle is a principal target tissue for insulin, it
has become apparent in the last several years that muscle is also
an important site of action for the IGFs (3-16). Specific high
affinity receptors for IGF-I and II have been identified in
various muscle cell lines as well as in primary monolayers of
normal muscle (3-10), and both IGF peptides are capable of
stimulating growth and differentiation of muscle cells (1 1-14).

In distinction to insulin, however, there is evidence that a
significant component of IGF action in muscle is mediated
through autocrine or paracrine mechanisms. In addition to
high affinity receptors specific for IGF-I and II, mRNAand
peptide for both IGFs have been detected in cloned muscle cell
lines, normal fetal and adult muscle tissues, in postinjury re-
generating muscle, and in muscle during growth hormone-
stimulated hypertrophy (9, 10, 17-22). Furthermore, IGF bind-
ing proteins, which may modify the biological activity of the
IGFs, are also secreted by muscle cells (23).

Whether locally secreted or derived from the circulation,
the biological effects of the IGFs in muscle and other tissues are
mediated through interaction with specific cell-surface recep-
tors. The IGF-I receptor is a tetrameric glycoprotein composed
of two extracellular a-subunits (135 kD) which bind the ligand
and the two transmembrane ,8-subunits (90 kD) which have
intrinsic tyrosine kinase activity (24-26). The primary struc-
ture of the human and partial structure of the rat IGF-I recep-
tors have been recently determined by cDNAcloning (26, 27),
and thus the regulation of the IGF-I receptor can be studied at
the level of gene expression.

Regulation of IGF-I receptor expression in muscle cells has
been controversial. IGF-I receptors have been reported to ei-
ther decrease or increase during muscle cell differentiation (4,
10), though the mechanisms responsible for these changes are
not well understood. In order to clarify how the IGF-I receptor
is regulated in muscle, we characterized the IGF-I receptor dur-
ing differentiation of the BC3H- I mouse muscle cell line. Fur-
thermore, we determined whether this cell line expressed IGF

1. Abbreviations used in this paper: DMEH,Dulbecco's modified Ea-
gle's medium; FBS, fetal bovine serum; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; IGF, insulin-like growth factor; PDGF,
platelet-derived growth factor.
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wotential autocrine role of these pep- replacing medium containing 20% FBS with medium containing 1%
F-I receptor expression. FBS. Myocytes were studied for up to 7 d in differentiation medium.

Undifferentiated cells were studied 3 d after plating in medium con-
taining 20% FBS.

Hormone binding assays. Cell monolayers in 6-well plates were
ducts were purchased: [35S]methionine rinsed with 2 ml of 120 mMNaCl, 1.2 mMMgSO4, 15 mMNaOAc,
isulin (2,200 Ci/mmol) from New En- 2.5 mMKCI, 10 mMglucose, 1 mMEDTA, 1% bovine serum albu-
'I]-IGF-I,[Thr59] (2,000 Ci/mmol) from min, and 100 mMHepes, pH 7.6, and incubated in 2 ml of the same
Heights, IL; and porcine insulin from buffer containing 4.5 pM '25I-IGF-I and varying concentrations of un-
lis, IN. IGF-I was a gift from CIBA- labeled ligand for 18 h at 40C (32). The incubation medium was aspi-
GF-II was a gift from Eli Lilly and Co., rated, the monolayers were washed with 10 mMTris HCI (pH 7.4) and
receptor antiserum Bd was a gift from 154 mMNaCl, and the cells from each well were lysed in 1 ml 0.03%
rsity, Philadelphia, PA). Anti-receptor NaDodSO4 (SDS) for measurement of cell-associated radioactivity.
nizes both insulin and IGF-I receptors Binding was corrected for nonspecific '25I-IGF-I binding as determined
Rat IGF-I (29) and IGF-II (30) cDNAs in the presence of 3 x 108 Munlabeled IGF-I. Binding determinations

S. Casella (Johns Hopkins University were carried out in triplicate for each concentration of unlabeled li-
Sechler (National Institute of Diabetes, gand. Binding in each well was normalized to total protein (34).
ases, National Institutes of Health, Be IGF-I receptor biosynthesis studies. BC3H-1 cells were plated in
syceraldehyde-3-phosphate dehydroge- 75-cm2 flasks at 4 X I03 cells/cm2 in DMEH-21 containing 20% FBS.

Ily provided by Dr. 0. Chazenbalk (Vet- Differentiation was induced as described above. Cells were washed
Center, University of California, San twice in PBSand labeled by adding 1.5 mCi [35S]methionine to 5 ml of

medium lacking methionine. Cells were incubated for 4 h at 37°C.
Xgtll human placental cDNA library Under these conditions, [35S]methionine incorporation into IGF-I re-
screened with an 84-base oligonucleo- ceptor increased linearly for up to 4 h, indicating that receptor degrada-
4. S. Urdea, Chiron, Emeryville, CA) tion was not a significant variable during this time period. The cells
5-4059 of the human IGF-I receptor were then washed with PBS, scraped off, and solubilized for 60 min
4ring of Ullrich, et al. (26). From with Triton X- 100 plus 0.1 mMphenylmethylsulfonyl fluoride and 2

identified; the one containing the long- mg/ml bacitracin (28). Suspensions were then centrifuged at 100,000 g
tplaque-purified and subcloned into for 60 min and the solubilized IGF-I and insulin receptors were par-

ned by sequencing the ends by the di tially purified by wheat germ agglutinin chromatography (32). Labeled
ique (31). This 3' cDNA was used in receptors were immunoprecipitated using polyclonal antibodies, dena-
kiabundance, as it contained the region tured in Laemmli sample buffer containing 50 mMdithiothreitol, and
ly related insulin receptor which is also analyzed by electrophoresis in 7.5% SDSpolyacrylamide gels and fluo-

rography. Since an antiserum that recognizes only the murine IGF-I
nonfusing mouse cell line with charac- receptor was not available, IGF-I receptors were precipitated by a two-
-letal muscle (33), were grown in Dul- step method. First, insulin receptors were removed by double precipita-
um H-2 1 (DMEH-2 1) supplemented tion with antiserum Bd that immunoprecipitates the insulin receptor
FBS), 1% glutamine, and antibiotics. (32). Then, IGF-I receptors were immunoprecipitated with antiserum
an appearance typical of myoblasts. L1- 0 which recognizes both receptors.

IIs/cm2 in either 75-cm2 tissue culture RNA analysis. Poly(A)+ RNAwas isolated by lysing cells in 500
fter 3 d, differentiation was initiated by mMNaCl, 1% SDS, 10 mMEDTA, and 10 mMTris (pH 7.2) in the

presence of fungal Proteinase K (Bethesda Research Laboratories,
Gaithersburg, MD) (35). Lysates were then pushed through a 25-gauge

:EPTOR cDNA needle to sheer DNAand incubated at 37°C for 3 h to digest proteins.
Oligo (dT) cellulose (Collaborative Research, Bedford, MA) was added

4 5 6 7 to a final concentration of 2 mg/ml lysate and rotated overnight at
Kb room temperature. Oligo (dT)/poly(A)+ RNA hybrids were then

3 washed in high salt buffer (500 mMNaCl, 0.2% SDS, 0. 1 mMEDTA,
10 mMTris, pH 7.2). Poly(A)+ RNAwas then eluted, ethanol precipi-

I Ullr*ch t I tated, and resuspended in H20 (36). Poly(A)+ RNA concentrations
~~j-1(Ulirich et al.) were determined by optical density and normalized by hybridization

with oligo (dT) on a nitrocellulose slot blot (35, 37). For RNAtransfer
| (84-mer OLIGO) blots, 10 Ag of poly(A)+ RNAwere denatured in formaldehyde, sub-

jected to electrophoresis in 1% agarose gel, and transferred to nitrocel-
lulose (38). cDNA probes for the IGF-I receptor as well as for IGF-I,
IGF-II, and GAPDHwere labeled using random primers (39) .to a

3.2 Kb cDNA specific activity of 109 cpm/ug. Nitrocellulose membranes were prehy-
bridized, hybridized and washed as previously described (38), and auto-

A Xgtl 1 human placental cDNAli- radiography was carried out.
ase oligonucleotide probe comple- Radioimmunoassay. IGF-I and II were measured in conditioned
,he human IGF-I receptor cDNAac- media of BC3H- I cells after 1I0-fold Iyophilization. For IGF-I determi-
lirich et al. (26). From - 5 X 105 nation, binding proteins were removed by G-50 chromatography in
fied; the one containing the longest 0.25 Mformic acid as described by Hintz et al. (40). For IGF-II, bind-
ed and subcloned into pUC18. Its ing proteins were removed by extraction with 0.8 Mformic acid, 0.05%
icing using the dideoxy chain termi- Tween-20, and 70%acetone according to the method of Bowsher et al.
subunits and the transmembrane (41). Antibody UBK487 was used in the IGF-I RIA, as it recognizes
rted by Ullrich are indicated. murine IGF-I (42). Assay sensitivity was 12 ng/ml. For IGF-II determi-
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nations, a monoclonal antibody against human IGF-II (Amano Phar-
maceutical Co., Nagoya, Japan) having 100% cross-reactivity with rat
IGF-II was used. Assay sensitivity was 10 ng/ml.

Downregulation studies. The effect of IGF-II treatment on IGF-I
binding, IGF-I receptor biosynthesis, and IGF-I receptor mRNAabun-
dance was studied in BC3H- I myoblasts. (a) For binding studies, sub-
confluent myoblasts were studied 3 d after plating, as described above.
Cells were preincubated in serum-free DMEH-21 containing 1% BSA
with vehicle (0.1 N acetic acid) or the indicated peptide for 18 h at
370C. Cells were then washed twice at 4VC with buffer containing 0.5
Msodium acetate, 150 mMNaCI (pH 4.5) for 6 min to remove prein-
cubated peptide from the cell surface (43). The cells were then washed
three times with binding buffer at 4°C. Binding with ['251]-IGF-I was
subsequently carried out as described above. Data were analyzed by
analysis of variance with subsequent comparisons to control values
made by unpaired t test. (b) For IGF-I receptor biosynthesis studies,
myoblasts were preincubated with IGF-II or vehicle, as described
above, and determination of IGF-I receptor biosynthesis by
[35S]methionine labeling and immunoprecipitation was carried out. (c)
For IGF-I receptor mRNAabundance studies, myoblasts were prein-
cubated with IGF-II or vehicle as described for binding and receptor
biosynthesis studies, after which poly(A)+ RNAwas isolated and ana-
lyzed as described above.

Results
IGF-I binding studies. To investigate the specificity of 1251I-IGF-
I binding in BC3H- 1 myoblasts, competition-inhibition studies
were carried out (Fig. 2). Specific 125I-IGF-I binding was inhib-
ited by unlabeled IGF-I one-half maximally at 0.14 nM. IGF-II
also interacted with the IGF-I receptor, though one-half-maxi-
mal inhibition of IGF-I binding occurred at 1.3 nM IGF-II. At
concentrations up to 10 nM, insulin had little effect in inhibit-
ing IGF-I binding.

To investigate the effect of differentiation on IGF-I binding
in BC3H-1 cells, we compared binding in myoblasts with that
in myocytes during 7 d of differentiation (Fig. 3). Specific 1251I
IGF-I binding per mg protein was 16.1±0.3% (mean±SE) in
myoblasts, increased transiently to a peak of 21.4±0.6% after 1

25 Figure 3. Effect of dif-
ferentiation on 1251

a 20- - IGF-I binding in
*- \BC3H-1 cells: time

course. Cells were plated
E 10- < in 35-mm wells and

5s- * . . specific '25I-IGF-I bind-
0. * ing per mgof protein

o was measured. On day
012DAYS 5 6 7 o0, when myoblasts were

80-90% confluent, dif-
ferentiation was initiated by replacing medium containing 20% FBS
with medium containing 1%FBS. Each point is the mean (±SE) of
three separate experiments performed in triplicate.

d, and decreased by 7 d to a plateau of 4.5±0.2%. Concurrently,
i251-insulin binding increased during differentiation, as
previously reported (32) (data not shown).
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Figure 2. Specificity of '25I-IGF-I binding in BC3H- l myoblasts. Cells
were incubated with 4.5 pM '25I-IGF-I and varying concentrations
of unlabeled IGF-I, IGF-II, or insulin for 18 h at 4°C. Bound radioli-
gand was determined after aspiration of incubation medium and cell
washing. Binding is expressed as a percentage of maximal specific
'25I-IGF-I binding per mgof protein. A representative of three sepa-
rate experiments is shown. Each point represents the mean of tripli-
cate values.
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To determine whether the differentiation-associated de-
crease in IGF-I binding reflected a change in the affinity or
number of IGF-I receptors, Scatchard analyses were carried out
(Fig. 4). Binding of IGF-I to both myoblasts and myocytes was
best fit by a one-site model. With differentiation, IGF-I recep-
tors decreased from 27,000±1,000 (mean±SE) binding sites
per cell in myoblasts to 1 1,000±1,000 binding sites per cell in
myocytes. In contrast, IGF-I receptor affinity was not signifi-
cantly different between myoblasts and myocytes (0.34±0.02
nM, mean±SE, n = 3 vs. 0.43±0.05 nM, respectively).

IGF-I receptor biosynthesis. Cell labeling studies with
[35S]methionine followed by immunoprecipitation with antire-
ceptor antisera showed that the differentiation-associated de-
crease in IGF-I binding reflected a decrease in receptor biosyn-
thesis. In both myoblasts and myocytes, a single band of M,
135,000 corresponding to the a-subunit of the IGF-I receptor
was apparent. In addition, two bands of M, 95,000 and
97,000 corresponding to IGF-I receptor ,8-subunits were seen
in myoblasts with a slightly larger 13-subunit doublet seen in
myocytes (Fig. 5). With differentiation, there was a 50-60%
decrease in the biosynthesis of the IGF-I receptor a-subunit. In
addition, myocytes demonstrated a 60%decrease in the biosyn-
thesis of the larger IGF-I receptor 13-subunit but no apparent
change in the smaller ,8-subunit. In contrast, there was a
marked differentiation-associated increase in the biosynthe-
sis of the insulin receptor a- and ,8-subunits as previously re-
ported (32).

IGF-I receptor mRNAabundance during differentiation. To
determine whether the differentiation-associated decrease in
IGF-I receptor biosynthesis was associated with a decrease in

A
Kb

9.5-
7.5
4.4-
DAY

-*

0 1 3 7

B Figure 6. (A) IGF-I re-
ceptor mRNAabun-
dance during differen-

KbLRtiation. 10 jg poly(A)+
RNAfrom BC3H-I

2. 4 myoblasts (day 0) and
I_ CS __ myocytes(l,3,and7

1 . 4- d of differentiation)
were denatured in

DAY 0 1 3 7 formaldehyde, subjectedto electrophoresis in 1%
agarose gel, and transferred to nitrocellulose. IGF-I receptor cDNA
was labeled using random primers to a specific activity of I09 cpm/gg.
After prehybridization, hybridization, and washing, autoradiography
(48 h at -70'C) was carried out. (B) Hybridization of the same RNA
transfer blot with a GAPDHcDNA. A representative experiment is
shown.

IGF-I receptor mRNAabundance, RNAtransfer blot analyses were carried out (Fig. 6). Autoradiographs of mRNAfrom myo-
blasts revealed a major band at 1.0 kb and a minor band at 5.5
kb. After 1 d of differentiation, there was no change in IGF-I

MYOBLASTS MYOCYTES receptor mRNAabundance. However, at 3 d there was a 75%
decrease, and by 7 d of differentiation, an 80-90% decrease in

kDa1234 5 6 IGF-I receptor mRNAabundance was observed.
kDa 1 2 3 4 5 6 IGF-II expression and secretion during differentiation. In

2 00O- order to determine whether differentiation was associated with
an increase in IGF-II expression and secretion, transfer blot
analyses of mRNAand radioimmunoassay of peptide in condi-
tioned media were carried out. In myoblasts, RNA transfer

1 1 6- Adblots revealed a single mRNAspecies of - 4.0 kb, identical in
size to the principal IGF-II transcript reported to be present in
extracts from murine muscle (18, 19) (Fig. 7 A). After 1 d of

93- - sib differentiation, there was a 2- to 3-fold increase in IGF-II
mRNAabundance. After 3 d there was a 15-fold increase in
IGF-II mRNAabundance, which then decreased to a level that
was 5-fold greater than that seen in myoblasts. RIA of IGF-II in
conditioned media from myoblasts demonstrated levels that
were - 1O ng/ml greater than those in control 20%serum-sup-

6 6- plemented media (90 ng/ml). However, with differentiation,
concentrations of IGF-II in conditioned media reached a peak

Figure 5. IGF-I receptor biosynthesis in BC3H- I cells. Cells were la- of 50 ng/ml on day 5 in comparison to levels of - 15 ng/ml in
beled by adding 1.5 mCi [35Sjmethionine to medium lacking methio- unconditioned 1%serum-supplemented media (Fig. 8).
nine. Cells were incubated for 4 h at 370C, washed, and solubilized. In contrast to IGF-II, RNAtransfer blots revealed low IGF-
IGF-I receptors were partially purified by wheat germ agglutinin I peptide mRNAabundance in myoblasts (three species of 7.8,
chromatography, immunoprecipitated with polyclonal antibodies
(lanes 1 and 4) or normal rabbit serum (lanes 3 and 6), reduced, and 2.0, and i.0 kb) which decreased slightly during differentiation
analyzed by 7.5% SDS-PAGEand fluorography. For comparison, (Fig. 7 B). IGF-I was not detected in conditioned media from
insulin receptor biosynthesis (lanes 2 and 5) is also shown. All lanes either myoblasts or myocytes.
were run on the same gel. The positions of molecular weight markers IGF-I receptor downregulation by IGF-II. To investigate
(in thousands) are indicated. the potential role of IGF-II in the differentiation-associated
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A K b Figure 7. IGF-I and II

44- mRNAabundance dur-
ing differentiation.

2.4- Transfer blots of 0 ,g
poly(A)+ RNAfrom

DAY 0 1 3 7 BC3H-l myoblasts (day
0) and myocytes (1, 3,

B Kb and 7 d of differentia-
tion) were carried out as

95_ .. described in Fig. 6. (A)

7.5. Hybridization with

4 4_ * IGF-II cDNA (autoradi-
ography was carried out

2.4- for 3.5 h at -70°C). (B)
1.@4- w Hybridization with

X#***IGF-I cDNA (autoradi-
* ography was carried out

0.2- for 7 d at -70°C). A
representative experi-

DAY 0 1 3 7 ment is shown.

decrease in IGF-I receptor expression, we studied the effects of
the addition of IGF-II to myoblasts. As noted above, these cells
have a relatively high level of IGF-I receptor expression and a

relatively low level of IGF-II peptide expression. Preincubation
of myoblasts for 18 h with IGF-II demonstrated a decrease in
specific IGF-I binding (Fig. 9). At a concentration of 100 ng/
ml, IGF-II induced a 60% decrease in IGF-I binding, while
comparable concentrations of IGF-I and insulin induced 80
and 40% decreases in IGF-I binding, respectively.

Next, we determined whether IGF-II treatment of myo-

blasts influenced IGF-I receptor biosynthesis. After preincuba-
tion of myoblasts for 18 h with IGF-II (100 ng/ml), a 35%
decrease in the IGF-I receptor a-subunit and a 50%decrease in
the larger (-subunit (but not the smaller (3-subunit) were seen

(Fig. 1O). This decrease in IGF-I receptor biosynthesis in myo-

blasts treated, with IGF-II was similar to the decrease in IGF-I
receptor biosynthesis that was observed when myoblasts differ-
entiated into myocytes.

In addition, weexamined whether IGF-II treatment of myo-

blasts influenced IGF-I receptor mRNAabundance. Myoblasts
were preincubated with IGF-II (100 ng/ml) or vehicle for 18 h
and mRNAwas isolated. RNA transfer blots demonstrated
that IGF-JI treatment resulted in a 60% decrease in IGF-I re-

ceptor mRNAabundance (Fig. 1).

Discussion

In view of the ability of the IGFs to promote the growth and
differentiation of muscle cells (1 1- 14), we investigated the regu-
lation in this tissue of the IGF-I receptor, which mediates the
mitogenic effects of IGF-I and possibly those of IGF-II. While
some studies indicate that IGF-II can signal through its own

receptor (44-46), other reports have demonstrated that both
IGF peptides can induce mitogenic effects through the IGF-I
receptor ( 14- 16). A muscle cell line in culture provides an op-

portunity to study changes in IGF-I receptor expression during
the differentiation process, and to investigate potential mecha-
nisms responsible for these changes. For this purpose, we em-

ployed BC3H- I cells, a nonfusing mouse cell line with charac-
teristics of both smooth and skeletal muscle (33). These cells

have been extensively used as a model system for studying the
events that occur when myoblasts differentiate into myocytes
(47, 48).

In this study, we found, as previously reported (4, 32), that
IGF-I binding is decreased during differentiation of myoblasts
to myocytes. This decrease in IGF-I receptor binding reflected
a decrease in IGF-I receptor gene expression and receptor bio-
synthesis. To explain the mechanisms of IGF-I receptor
downregulation during differentiation, we investigated the
principal ligands that interact with the IGF-I receptor, IGF-I
and II. Concomitant with differentiation into myocytes there
was a marked increase in IGF-II gene expression and secretion
by BC3H- 1 cells. This increase in IGF-II gene expression pre-
ceded the decrease in IGF-I receptor gene expression. In con-
trast to IGF-II, the gene expression of IGF-I, which was low in
myoblasts, did not increase with differentiation. To determine
whether the increase in IGF-II expression mediated the differ-
entiation-associated decrease in IGF-I receptor expression, we
added IGF-I1 directly to undifferentiated myoblasts. Exoge-
nous IGF-II reduced IGF-I receptor binding, biosynthesis, and
receptor gene expression. These observations indicate, there-
fore, that the decrease in IGF-I receptor gene expression during
differentiation of myoblasts to myocytes may be accounted for
through autocrine mechanisms involving expression of IGF-II.

It is noteworthy that the concentration of IGF-II in condi-
tioned media from BC3H- 1 muscle cells undergoing differen-
tiation ranged from - 20-50 ng/ml, while 30-100 ng/ml of
exogenous IGF-II were required to induce IGF-I receptor
downregulation in myoblasts. It is conceivable that during dif-
ferentiation, the IGF-I receptor is downregulated by endoge-
nously produced IGF-I1 principally through intracellular mech-
anisms. This type of receptor regulation has been recently de-
scribed for platelet-derived growth factor (PDGF) receptors in
v-sis-transformed normal rat kidney cells, where concomitant
expression of a PDGFanalogue led to downregulation of the
PDGFreceptor in intracellular compartments (49). Thus, se-
creted IGF-II may not accurately reflect intracellular IGF-II
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Figure 8. IGF-II secretion during differentiation. IGF-II (mean±SE)
was determined by RIA of conditioned media from BC3H- l cells for
up to 6 d of differentiation. The levels of IGF-II in control 1%
serum-supplemented media were - 15 ng/ml. Each point represents
the mean of four samples. A representative experiment is shown.
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Figure 9. IGF-I receptor downregulation by IGF-II. BC3H- I myo-
blasts were preincubated in serum-free DMEH-21 containing 1% BSA
with vehicle (0.1 N acetic acid) or the indicated peptide for 18 h at
370C. Specific '251-IGF-I binding was then determined. Each bar rep-
resents the mean of six separate experiments carried out in triplicate.
*P < 0.0001 vs. vehicle.

concentrations, which could be higher. In addition, IGF-I re-
ceptor studies during differentiation and during downregula-
tion by exogenous IGF-II are not directly comparable, as their
experimental designs were not equivalent. In the downregula-
tion studies, a relatively high concentration of IGF-II (100 ng/
ml) was used in undifferentiated cells, but for a relatively brief
period (18 h). In contrast, cells undergoing differentiation,
while exposed to lower IGF-II concentrations in media (up to
50 ng/ml), were exposed to endogenously produced IGF-II for
3-7 d.

Previous studies of IGF-I receptor expression during mus-
cle cell differentiation have yielded conflicting observations.
Similar to BC3H- I cells, IGF-I receptor content as determined
by Scatchard analysis also decreased during differentiation of
the rat L6 skeletal muscle cell line (4). When similar analyses
were carried out in mouse C2 muscle cells, it was reported that
IGF-I receptor content increased transiently during differentia-
tion (10). However, comparison of IGF-I binding in these cell
lines is limited by differing experimental designs. L6 cells were
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Figure 10. Effect of
IGF-II preincubation
on IGF-I receptor bio-
synthesis in myoblasts.
BC3H-I myoblasts were
preincubated in serum-
free DMEH-21 contain-
ing 1%BSAwith vehicle
(0.1 Nacetic acid; lanes
I and 2) or IGF-II (100
ng/ml; lane 3) for 18 h
at 37°C. Cell labeling
with [35S]methionine,
solubilization, immuno-
precipitation with anti-
receptor antisera, lanes
2 and 3 (or normal rab-
bit serum, lane 1), SDS-
PAGEand fluorogra-
phy were performed.
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Figure 11. Effect of IGF-1I
preincubation on IGF-I
receptor mRNAabundance
in myoblasts. BC3H-I
myoblasts were preincu-
bated in serum-free
DMEH-21 containing 1%
BSA with vehicle (0.1 N
acetic acid; lane 1) or IGF-
11 (100 ng/ml; lane 2) for
18 h at 370C. Transfer blots
of 10 ug poly(A)+ RNA
were carried out and hy-
bridized with the IGF-I re-
ceptor cDNA. A represen-
tative experiment is shown.

studied only before and after 18 d of differentiation (4), while
C2 (10) and BC3H-1 cells were studied daily for 4 and 7 d,
respectively.

Concomitant expression of the IGF-I receptor and the IGFs
has been reported in a number of cells and tissues (9, 10, 50).
This observation suggests that IGF-I receptor regulation may
occur via autocrine/paracrine mechanisms. In addition to sig-
naling cellular functions via the IGF-I receptor, the IGF ligands
also regulate the IGF-I receptor (3, 51, 52). These studies, how-
ever, are the first to demonstrate an increase in IGF-II expres-
sion during differentiation that is associated with a concomi-
tant decrease in IGF-I receptor biosynthesis and gene expres-
sion. It is of interest that Tollefsen et al. found that IGF-II and,
to a lesser extent, IGF-I expression increased during differen-
tiation of the C2 mouse muscle cell line (9, 10). However, in
these studies, they observed an increase in IGF-I binding after
2-3 d of differentiation followed by a decrease after 4 d to levels
equivalent to that in myoblasts (10). In this study, we also
noted a transient increase in IGF-I binding in BC3H-1 cells
during the first 2 d of differentiation. However, after 3 d in
differentiation media, when IGF-II gene expression in BC3H- I
cells was markedly increased, IGF-I receptor expression was
suppressed below levels seen in myoblasts. Since serum con-
tains IGF peptides that can interact with the IGF-I receptor, it
is possible that, when first placing the cells into a low serum-
containing medium (in order to induce differentiation), such
peptides are decreased, allowing transient receptor upregula-
tion. The observation that IGF-I receptor mRNAabundance is
similar in BC3H- I myoblasts and in cells after 1 d of differen-
tiation (Fig. 6 A), suggests that the transient increase in IGF-I
binding (on days 1-2) may be accounted for by translational or
posttranslational mechanisms.

In summary, differentiation of BC3H- 1 mouse muscle cells
is associated with decreased IGF-I receptor content, biosynthe-
sis and gene expression, and a marked increase in IGF-II pep-
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tide gene expression. Furthermore, treatment of undifferen-
tiated myoblasts with IGF-II results in IGF-I receptor downre-
gulation at the levels of binding, receptor biosynthesis, and
receptor mRNAabundance. These studies suggest, therefore,
that IGF-I receptor expression during muscle cell differentia-
tion may be regulated, at least in part, through autocrine pro-
duction of IGF-II.
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