Abstract

Familial glucocorticoid resistance is a hypertensive, hyperandrogenic disorder characterized by increased serum cortisol concentrations in the absence of stigmata of Cushing's syndrome. Our previous studies of the first reported kindred showed a two- to threefold reduction in glucocorticoid receptor-ligand binding affinity in the propositus, and a lesser reduction in affinity in his mildly affected son and nephew. Glucocorticoid receptor cDNA from these three patients was amplified by polymerase chain reaction and sequenced. The cDNA nucleotide sequence was normal, except for nucleotide 2054, which substituted valine for aspartic acid at amino acid residue 641. The propositus was homozygous while the other relatives were heterozygous for the mutation. COS-7 monkey kidney cells were cotransfected with expression vectors for either wild type or Val 641-mutant receptors, together with the reporter plasmid pMMTV-CAT. Dexamethasone increased chloramphenicol acetyltransferase activity in cells expressing wild type receptor, but had no effect in cells expressing Val 641-mutant receptors, despite similar receptor concentrations, as indicated by Western blotting. The binding affinity for dexamethasone of the Val 641-mutant receptor was threefold lower than that of the wild type receptor. These results suggest that glucocorticoid resistance in this family is due to a point mutation in the steroid-binding domain of the glucocorticoid receptor.

Authors

D M Hurley, D Accili, C A Stratakis, M Karl, N Vamvakopoulos, E Rorer, K Constantine, S I Taylor, G P Chrousos

×

Other pages: