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Abstract

The regulation of IL-3 gene induction in human peripheral
blood T cells was studied. IL-3 gene expression was inducible
by crosslinking of the T cell receptor/CD3 complex using
anti-CD3 MAbG194. Anti-CD3-induced IL-3 gene expres-
sion was found to be limited to the CD28+ T cell subset and
could be augmented by costimulating T lymphocytes with anti-
bodies directed against CD28. IL-3 expression could also be
induced by costimulation of T cells with both phorbol ester and
ionomycin, which are thought to mimic the intracellular effects
of T cell receptor-antigen interaction. However, unlike other
lymphokines such as IL-2 or granulocyte-macrophage colony-
stimulating factor, IL-3 gene expression is not induced by stim-
ulation of cells with phorbol myristate acetate and anti-CD28.
Weconclude that IL-3 gene regulation is under stringent con-

trol since IL-3 gene expression occurs only in the CD28+ sub-

set of T cells, and since IL-3 induction obligately requires
increased intracellular calcium.

Introduction

Hematopoiesis appears to be regulated by the effects of a com-

plex series of growth factors. One such hematopoietic growth
factor is the lymphokine IL-3. IL-3 is of particular interest
because it exerts a broad range of hematopoietic activities on

both multilineage and committed progenitor cells (1-4). In
serum-free cultures IL-3 supports the early division of progen-

itor cells of erythroid, myeloid, and megakaryocytic lineage, as

well as multilineage progenitor cells (5). The cellular source of
IL-3 appears to be quite restricted. Unlike granulocyte colony-
stimulating stimulating factor which is produced by mono-

cytes and fibroblasts (2), or granulocyte-macrophage colony-
stimulating factor (GM-CSF)' which is produced by fibro-
blasts, endothelial cells, epithelial cells, and T lymphocytes (2,
6, 7), IL-3 is produced uniquely by T lymphocytes (2, 8). Fur-
thermore, unlike other T cell lymphokines IL-3 gene expres-

sion is only weakly inducible with lectin stimulation of T cells
(8, 9). These observations suggest that the expression of IL-3 is
either restricted to a subset of T cells or that the conditions for
maximal IL-3 gene expression are more stringent than for
other T cell-derived lymphokines. Thus, because IL-3 is a

broadly active molecule, and because the conditions of IL-3
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1. Abbreviations used in this paper: GM-CSF, granulocyte-macrophage
colony-stimulating factor; PDBU, phorbol dibutyrate.

gene induction are poorly understood, we sought to examine
the physiological basis for the restricted expression of the IL-3
gene.

The best characterized pathway of T cell activation occurs
through the T cell receptor (TCR)/CD3 complex. Stimulation
of this pathway induces a variety of T cell lymphokine/cyto-
kine genes (10). Activation of the TCR/CD3 pathway is
thought to result from the interaction of the receptor with
specific soluble antigen presented on an MHCmolecule by
macrophages, B cells, or other antigen-presenting cells, and by
foreign cell surface antigens, e.g., viral proteins. Binding of
antigen to the TCR/CD3 complex activates phospholipase C.
Phospholipase C hydrolyzes phosphatidylinositol to inositol
triphosphate and diacylglycerol. Inositol triphosphate in-
creases the intracellular calcium concentration both by mobi-
lizing intracellular calcium stores (e.g., from the endoplasmic
reticulum) and by increasing extracellular calcium flux. Diac-
ylglycerol induces translocation of protein kinase C from the
cytosol to the plasma membrane (11-15). Polyclonal, normal
T cells can be activated by antibodies that activate the TCR/
CD3complex by binding to one of the invariant chains of the
complex. Alternatively, T cell receptor activation can be mim-
icked by the combination of a phorbol ester such as phorbol
myristate acetate (PMA) and the calcium ionophore ionomy-
cin. PMAdirectly activates protein kinase C, and the calcium
ionophore ionomycin increases intracellular calcium levels
(16). Recent work has shown that the expression of several
lymphokine genes can be further augmented by costimulation
of the TCR/CD3 complex and a 44-kD cell surface protein
termed CD28 (10). Alternatively, the combination of PMA
and anti-CD28 stimulation can activate T cells in an appar-
ently calcium-independent fashion (10, 17).

Wehave used the TCR/CD3 pathway to study the regula-
tion of IL-3 gene induction. Wehave found that T cell IL-3
gene expression is induced by TCR/CD3 complex activation
alone, occurs exclusively in the CD28+ subset of T cells, and is
augmented by costimulation with anti-CD28. The effects of
the TCR/CD3 activation on IL-3 gene expression can be mim-
icked by PMAand ionomycin. However, unlike other lym-
phokines (10) the alternative T cell activation pathway in-
duced by PMAand MAb9.3 (anti-CD28) does not result in
IL-3 gene expression. This suggests there is an obligate calcium
requirement for IL-3 gene expression since soluble MAb9.3
does not increase intracellular calcium levels (17). Thus, IL-3
gene expression is under stringent regulation, having, in the
absence of cell surface signals, an obligate calcium require-
ment.

Methods

Cells. PBMC(2 X 108-2.5 X 109) were isolated from buffy coats ob-
tained by leukapheresis or phlebotomy of healthy donors 21-31 yr old
using density gradient centrifugation. In some experiments the CD28+
and CD28- subsets of T cells were isolated from the PBMCby negative
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selection using immunoabsorption (18). Taking advantage of the re-

ciprocal expression of the cell surface antigens CD11 and CD28 on T
cells, the CD28- and CD28+ subsets were separated. To isolate CD28+
T cells, the PBMCwere incubated at 4°C with saturating quantities of
MAbs 60.1 (CDl 1), lF5 (CD20), FC-2 (CD16), and 20.3 (CD14) to
remove B cells, monocytes, large granular lymphocytes, and CD28- T
lymphocytes. Alternatively, CD28- cells were prepared by incubating
with the MAb9.3 (CD28). The cells were washed to remove unbound
antibodies and then incubated with goat anti-mouse Ig-coated mag-

netic particles (Advanced Magnetics Institute, Cambridge, MA). The
antibody-coated cells bound to the magnetic beads were removed by
magnetic separation. Cell purification was monitored by flow cytome-
try and histochemistry. Cells were stained with FITC-conjugated CD2
MAbOKT 1 I (Coulter Electronics, Inc., Hialeah, FL) and were > 98%
CD28+, and < 1% CD28+, respectively, when compared with a non-

binding, isotype-matched FITC-labeled control antibody. Residual
monocytes were quantitated by staining for nonspecific esterase and
were < 0.1% in purified cell populations used in this study. Viability
was > 99% as measured by trypan blue staining.

MAbs. The MAbs 9.3 (anti-CD28) and G19-4 (anti-CD3) were

produced as previously described (19, 20).
Activation of T cells. PBMCor CD28+ lymphocytes were cultured

at 1 X 106/ml in RPMI 1640/10% FCSat 37°C. To stimulate T cells by
the TCR/CD3 pathway, cells were cultured on plastic petri dishes
coated with MAb G19-4 (anti-CD3). In some experiments soluble
MAb9.3 (anti-CD28) was added at 1 mg/ml. The cells were incubated
between 1 and 36 h and then harvested.

In some experiments cells were activated by stimulation with PHA
at 10 ,ug/ml (Wellcome Diagnostics, Research Triangle Park, NC).
Resting PBMCwere cultured in 25-cm2 tissue culture flasks (Corning
Glass Works, Corning, NY) at 1 X 106 cells/ml in RPMI 1640/10%
FCS for 12 h at 37°. 10 ,ug/ml PHA was then added to the treated
cultures and the cells were harvested at 1, 6, 12, and 24 h.

In other experiments PBMC, purified CD28+ T cells, or purified
CD28- T cells were directly stimulated with PMAat 3 ng/ml (Sigma
Chemical Co., St. Louis, MO) or phorbol dibutyrate (PDBU) at 100
ng/ml (LC Services Corp., Woburn, MA) with or without ionomycin at
300-800 ng/ml (Calbiochem-Behring Corp., San Diego, CA). The sol-

Figure 1. Induction of IL-3 gene expression by
anti-CD3 or anti-CD3 with anti-CD28. Puri-
fied resting human peripheral blood T cells
cultured with RPMI 1640/10% FCS (MED)
for 0 h, MAbG19-4 (ANTI-CD3) immobi-
lized on coated plastic dishes for 1, 6, 12, 24,
or 36 h, immobilized MAbG19-4 (ANTI-
CD3) plus soluble MAb9.3 (ANTI-CD28) at 1

Ag/ml for 1, 6, 12, 24, or 36 h. RNAwas ex-

tracted and equalized on nondenaturing 1%
agarose gels (top). The Northern blots were

transferred to nitrocellulose filters and hybrid-
ized sequentially with HLA Class I and IL-3
cDNAs. The HLA probe is visualized in the
upper band of the lower panel; the IL-3 probe
is visualized in the lower band of the lower
panel. The IL-3-labeled autoradiograph was

exposed to XARfilm for 2 wk. Comparison of
IL-3 gene expression was performed by scan-

ning densitometry.

uble MAb9.3 was added to some cultures at a concentration of 1.0
,gg/ml. The incubations were stopped at the appropriate serial time
points and the cells were harvested for RNA.

Determination of IL-3 mRNAhalf-life. Purified resting CD28' T
cells were cultured in RPMI 1640/10% FCSat 1 X 106/ml. The CD28'
T cells were stimulated for 3 h by culturing on MAbG19-4 (anti-
CD3)-coated plastic tissue culture plates, with or without the addition
of MAb9.3 (anti-CD28) at 1 ,ug/ml. At 3 h RNAsynthesis was inhib-
ited by addition of 10 Asg/ml actinomycin D (Sigma Chemical Co.), to
the culture medium. The cells were harvested at 15, 45, and 90 min
after the addition of actinomycin D for extraction of total cellu-
lar RNA.

Northern (RNA) blot analysis. The cells were harvested and total
cellular RNAwas isolated using the guanidinium isothiocyanate
method (20). RNAcontent of individual samples was equalized by
ethidium bromide staining after separation on 1%nondenaturing aga-
rose gels (21). The equalized RNAsamples were then separated on 1%
agarose-formaldehyde gels and transferred to nitrocellulose. Nick
translated 32P-labeled cDNA probes were hybridized to the filters in
50% formamide-10% dextran sulfate-5X standard saline citrate (SSC;
1X SSCis 0.15 MNaCl and 0.015 Msodium citrate), I1X Denhardt's
solution, 25 mMsodium phosphate (pH 6.5), 250 ,g of Torula yeast
RNA/ml with a probe concentration of 106 cpm/ml at 42°C for 16-20
h. After hybridization the filters were washed twice for 5 min at 22°C
in I X SSC-0.1 %SDS, then twice for 30 min at 55°C in 0.1 X SSC-0.1 %
SDS. Autoradiography was performed by exposing XAR film (East-
man Kodak Co., Rochester, NY) to the Northern blot filters at -70°C.
Quantitation of band intensities on the Northern blot autoradiographs
was performed by scanning densitometry as previously described (22).

DNAprobes. The cDNAprobes used resulted from nick translation
of gene-specific inserts (100 ng). The inserts were obtained after diges-
tion with the appropriate endonucleases of the plasmid in which they
were propogated. Digestion was followed by separation on low melting
point agarose. The IL-3 probe is a 1.0-kb Xho I cDNA fragment (9),
the IL-2 probe is a 1.0-kb Pst I cDNA fragment (23), the GM-CSF
probe is a 700-bp Eco RI-Hind III fragment (24), and the HLAprobe is
a 1.4-kb Pst I fragment (25). These cDNAprobes were added at a final
concentration of 106 cpm/ml of hybridization mix.
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Figure 2. Induction of IL-3 gene expression by PHA. Resting human
PBMC(PBMNC) were cultured at I X 106/ml in RPMI/10% FCS
overnight, then stimulated with 10 ,ug/ml PHA for 0, 1, 6, 12, and 24
h. Alternatively, punified resting human peripheral blood T cells were
cultured with immobilized MAbG19-4 (ANTI-CD3) for 6 h or im-
mobilized MAbG19-4 (ANTI-CD3) plus MAb9.3 (ANTI-CD28) 1
,ug/ml for 6 h. The cells were harvested and the RNAwas extracted
and equalized for rRNA (top) on nondenaturing gels. Northern blots
were sequentially hybridized with IL-3-, IL-2-, and HLA-specific
cDNA probes. The IL-3 probed blot was exposed to film for 12 d.
RNAexpression was compared by scanning densitometry.

Results

Induction of IL-3 gene expression by anti-CD3 or anti-CD3
with anti-CD28. To determine if stimulation of the TCR/CD3
pathway of T cell activation induced IL-3 gene expression, T
cells were activated with anti-CD3 for 1-36 h. Stimulation of T
cells by anti-CD3 MAbalone induced IL-3 gene transcription
with maximal mRNAaccumulation at 6 h. In view of the
previously described ability of anti-CD28 to augment anti-
CD3-induced expression of lymphokines (10), T cells were
also stimulated with anti-CD3 and anti-CD28 MAbs. This re-
sulted in an approximately three- to fivefold augmentation of
IL-3 expression (as evaluated by scanning densitometry) com-
pared with stimulation by anti-CD3 alone. The time course of
induction was not altered by anti-CD28, with maximal IL-3
message accumulation at 6 h (Fig. 1).

Induction of IL-3 gene expression by PHA. Previous at-
tempts to induce IL-3 gene expression with lectin alone have
been largely unsuccessful (8, 9). Since PHAis unable to stimu-
late purified T cells in the absence of macrophages (26) we
attempted to induce IL-3 gene expression by PHAstimulation
of unseparated PBMC. For comparison, purified peripheral

blood T lymphocytes were stimulated with immobilized anti-
CD3 alone or immobilized anti-CD3 plus soluble anti-CD28.
PHA stimulation of PBMCinduced IL-2 mRNAaccumula-
tion as effectively as did anti-CD3 stimulation (Fig. 2). How-
ever, PHAstimulation produced a lower level of IL-3 message
expression than did anti-CD3. This suggests that PHAdoes
not optimally induce the critical biochemical changes required
for high level IL-3 gene expression.

Induction of IL-3 gene expression by phorbol ester and
calcium ionophore. T cell activation by anti-CD3 results in
increased intracellular calcium and in activation of protein
kinase C (11-15). To dissect the mechanism by which anti-
CD3induces IL-3 gene expression, T cell activation was mim-
icked by the phorbol ester PDBUand the calcium ionophore
ionomycin. Resting, purified T lymphocytes were incubated
with PDBUalone, ionomycin alone, or PDBUand ionomy-
cin. Activation by either PDBUor ionomycin did not result in
a detectable IL-3 transcript. However, simultaneous stimula-
tion with PDBUand ionomycin induced significant expres-
sion of the IL-3 gene (Fig. 3), indicating that neither increased
intracellular calcium nor protein kinase Cactivation alone was
sufficient for IL-3 gene expression.

IL-3 expression is restricted to CD28' T cells and requires
intracellular calcium release. Previous studies have shown that
several T cell lymphokines could be induced not only by PMA
and ionomycin, but by PMAplus stimulation of cell surface
CD28 (10). This alternative pathway of T cell activation was
used to help define the obligatory biochemical events required
for IL-3 induction. PBMC, purified CD28' T cells, or CD28-
T cells were stimulated with PMAand ionomycin or PMAand
MAb9.3 (anti-CD28; Fig. 4). The results define two require-
ments for IL-3 gene expression. First, the combination of
PMAand ionomycin induces IL-3 message expression only in
the CD28' T cells, not in CD28- T cells. Thus, not only is IL-3
secretion restricted to T cells but, in fact, it is restricted to the
CD28' subset of T cells. Second, incubation with PMAand
anti-CD28, without ionomycin, failed to trigger IL-3 mRNA
accumulation. In contrast, GM-CSFwas readily inducible by
PMAplus anti-CD28, and did not require ionomycin. Thus,
this alternative T cell activation pathway, known to readily
induce T cell secretion of GM-CSF, as well as other lympho-
kines, is not a legitimate pathway for IL-3 induction. T cell
IL-3 gene induction, then, unlike GM-CSFgene induction,
appears to occur via an obligately calcium-dependent
pathway.

Halfife of IL-3 mRNAin activated T cells. Wenext asked
whether the augmentative effect of anti-CD28 on anti-CD3-
induced IL-3 mRNAaccumulation could be related to alter-
ations in IL-3 message stability. Purified CD28+ T cells were
coincubated for 3 h with anti-CD3 or anti-CD3 and anti-CD28
to induce IL-3 mRNAexpression. At 3 h actinomycin D, an
RNA synthesis inhibitor, was added to the incubation for
15-90 min. Total cellular RNAwas isolated and IL-3 mRNA
was measured by Northern blot analysis. The half-life of IL-3
mRNAafter CD3stimulation was 30 min. In contrast, stimu-
lation with anti-CD3 plus anti-CD28 prolonged the half-life of
the IL-3 mRNAtranscript to > 90 min since no significant
decline in IL-3 message was detected by densitometry (Fig. 5).
The mechanism for the amplification of T cell IL-3 gene in-
duction in cells activated by the CD28pathway can, at least in
part, be explained by the ability of anti-CD28 to stabilize the
IL-3 message and thereby prolong IL-3 message half-life.
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Figure 3. Induction of IL-3 gene expression by
phorbol ester and calcium ionophore. Purified
resting human peripheral blood T cells were cul-
tured at 1 X 106/ml in medium (MED) for 12 h,
ionomycin (I) 800 ng/ml for 1, 6, 12, and 24 h,
phorbol ester, PDBU(P) 100 ng/ml for 1, 6, 12,
and 24 h, or ionomycin 800 ng/ml and PDBU
100 ng/ml for 1, 6, 12, and 24 h. The cells were
harvested and the RNAwas extracted and sam-
ples were equalized for rRNA on nondenaturing
gels (top). Northern blots were transferred to ni-
trocellulose which was sequentially hybridized
with IL-3- and HLA class I-specific cDNA
probes. The film was exposed to the IL-3 probed
filter for 16 d at -700C.

PMA
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h
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Figure 4. IL-3 gene expression is restricted to
the CD28' T cell subset of PBMC. Resting
human PBMC(PBMNC), resting human pe-
ripheral blood CD28+ T cells, or CD28- cells
were cultured with medium (PMA-, ionomy-
cin-, MAb9.3-) for 0 h, PMA3 ng/ml and
ionomycin 400 ng/ml for 4, 8, or 12 h, or
PMA3 ng/ml and MAb9.3 (anti-CD28) 1
Ag/ml for 4, 8, or 12 h. The cells were har-
vested and the RNAwas extracted and equal-
ized for rRNA on nondenaturing gels (top).
Northern blots were transferred to nitrocellu-
lose and hybridized with IL-3-, GM-CSF-, and
HLA-specific cDNAprobes. The film was ex-
posed for 3 d.
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Figure 5. Half-life of IL-3 mRNAin activated T cells. Punfied rest-
ing human peripheral blood CD28' T cells were cultured for 3 h at 1
X 106/ml in medium (MED), immobilized MAbG19-4 (ANTI-
CD3), or immobilized MAbGI 9-4 (ANTI-CD3) and soluble MAb
9.3 (ANTI-CD28). Actinomycin D 10 ug/ml was added at 3 h and
coincubated for 0, 15, 45, and 90 min. The cells were harvested and
the RNAwas extracted and equalized for rRNA on nondenaturing
gels. Northern blots were transferred to nitrocellulose and hybridized
with IL-3- and HLA-specific cDNAprobes. The film was exposed to
the IL-3 probed blot for 5 d. RNAconcentrations were compared by
densitometry to determine half-life.

Discussion

Our data show that IL-3 gene expression is inducible via acti-
vation of the T cell receptor/CD3 pathway and can be aug-
mented by coactivation of the CD3and CD28 pathways. Acti-
vation of the CD3 pathway may be mimicked by costimula-
tion of T cells with both PMAand ionomycin, also resulting in
IL-3 gene expression. The ionomycin requirement appears to
be obligate; ionomycin cannot be replaced by MAb9.3 (anti-
CD28), as is the case with other lymphokines, including GM-
CSF. Thus, a calcium-dependent T cell activation pathway is
required for IL-3 gene induction.

IL-3 gene expression is inducible in purified T cell popula-
tions by stimulation of the TCR/CD3 complex with MAb
G19-4 (anti-CD3; Fig. 1). In contradistinction to anti-CD3,
the lectin PHA is a poor inducer of IL-3 gene expression.
However, PHA and anti-CD3 induce similar levels of IL-2
gene expression (Fig. 2). These data suggest that the regulation
of IL-3 and IL-2 expression is distinct and that while both
anti-CD3 and PHA induce the intracellular biochemical sig-
nals required for IL-2 gene expression, only anti-CD3 effi-
ciently elicits the appropriate intracellular signals required for
significant IL-3 gene expression. Furthermore, since anti-CD3
induces IL-3 gene expression in purified T cell populations,

neither accessory cell contact nor costimulation with other
lymphokines such as IL-1 are required for anti-CD3-induced
IL-3 gene expression.

IL-3 gene expression is also inducible when TCR/CD3
complex stimulation is mimicked by the combination of PMA
and ionomycin (Fig. 3). In contrast, MAb9.3 and PMAfailed
to induce IL-3 gene expression. This result was unexpected
since the combination of MAb9.3 and PMAdoes induce the
gene expression of a number of other lymphokines, including
GM-CSF(Fig. 4), tumor necrosis factor-a, leukotriene, IL-2,
and 'yINF (10). Thus, since substitution of CD28 stimulation
for ionomycin did not elicit IL-3 gene expression, we believe
the IL-3 gene induction pathway is obligately calcium depen-
dent. Furthermore, these data suggest that the mechanism by
which stimulation of the CD28 pathway induces GM-CSF
gene expression is not simply by increasing intracellular cal-
cium. This conclusion is consistent with recent observations
that show that soluble MAb9.3 does not increase intracellular
calcium (17). Alternatively, GM-CSFgene induction could
simply require lower levels of intracellular calcium than IL-3
gene induction. Thus, the distinction between IL-3 and GM-
CSF gene expression appears to involve calcium regulation
that is not bypassed by using CD28 stimulation.

From the point of view of lymphokine regulation, this cal-
cium requirement is the first qualitative difference demon-
strated between IL-3 and GM-CSFregulation. Kelso and
Owens (27) have suggested that IL-3 has more restricted regu-
lation than GM-CSF, even within a single T cell clone. Specifi-
cally, they hypothesized that one possible explanation for the
differential regulation of GM-CSFand IL-3 was a difference in
activation threshold between the two lymphokines, with IL-3
requiring the stronger stimulus. Niemeyer et al. have found
similarities between IL-3 and GM-CSFin terms of kinetics (8).
The present study both confirms the kinetic similarities ob-
served by Niemeyer et al., while defining a distinct biochemi-
cal signal; i.e., a calcium requirement, which could account for
the data of Kelso and Owens suggesting the more restricted
IL-3 expression.

As with GM-CSFand other lymphokines, IL-3 gene ex-
pression is augmented by anti-CD28. Inhibition of de novo
mRNAsynthesis with actinomycin Ddemonstrates that addi-
tion of anti-CD28 to anti-CD3-stimulated CD28+ T cells re-
sults in prolongation of IL-3 transcript half-life (Fig. 5) show-
ing that IL-3 message augmentation can be accounted for by
mRNAtranscript stabilization. Similarly, mRNAtranscript
stabilization appears to be the mechanism by which the CD28
pathway augments gene expression of other lymphokines, in-
cluding GM-CSF(10).

The natural ligand for CD28 is unknown. However, given
the transient nature of CD3-induced gene expression of many
lymphokines, including IL-3, and the ability of CD28 to aug-
ment lymphokine message, the CD28pathway may be a physi-
ologic pathway for T cell lymphokine production. Activation
of the CD28 pathway could have therapeutic implications
since the ability to augment the expression of T cell lympho-
kines could be a useful tool in the management of a variety of
cytopenic states.

In summary, IL-3 gene expression is inducible by the
CD3/TCR pathway mimicked by PMAand ionomycin. IL-3
gene expression is calcium dependent. Hence, T cell IL-3 gene
expression appears to be under stringent molecular regulation.
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Like GM-CSFand other lymphokines, IL-3 transcript accu-
mulation is augmented by CD28, an effect that can be ac-
counted for, at least in part, by stabilization of IL-3 mRNA.
Lymphokine augmentation by CD28 may prove to be an im-
portant clinical strategy that allows manipulation of lympho-
kine levels.
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