Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114257

Cl- secretion induced by bile salts. A study of the mechanism of action based on a cultured colonic epithelial cell line.

K Dharmsathaphorn, P A Huott, P Vongkovit, G Beuerlein, S J Pandol, and H V Ammon

Department of Medicine, University of California, San Diego.

Find articles by Dharmsathaphorn, K. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego.

Find articles by Huott, P. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego.

Find articles by Vongkovit, P. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego.

Find articles by Beuerlein, G. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego.

Find articles by Pandol, S. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego.

Find articles by Ammon, H. in: JCI | PubMed | Google Scholar

Published September 1, 1989 - More info

Published in Volume 84, Issue 3 on September 1, 1989
J Clin Invest. 1989;84(3):945–953. https://doi.org/10.1172/JCI114257.
© 1989 The American Society for Clinical Investigation
Published September 1, 1989 - Version history
View PDF
Abstract

When applied to the basolateral (serosal) side of the T84 colonic epithelial monolayer, taurodeoxycholate caused net Cl- secretion in a dose-dependent manner with a threshold effect observed at 0.2 mM. In contrast, when applied to the apical (luminal) surface, concentrations of taurodeoxycholate below 1 mM had little or no effect. Only when the concentration of taurodeoxycholate present on the apical side was greater than or equal to 1 mM did apical addition results in an electrolyte transport effect. This apical effect on electrolyte transport was associated with an abrupt increase in the permeability of the monolayer. Cyclic AMP and cyclic GMP in the T84 monolayers were not increased by the bile salt, but in the presence of extracellular Ca2+, free cytosolic Ca2+ increased with a graded dose effect and time course that corresponded approximately to the changes in short circuit current (Isc). The results suggest that luminal bile salts at a relatively high concentration (greater than or equal to 1 mM) increase tight junction permeability. Once tight junction permeability increases, luminal bile salts could reach the basolateral membrane of the epithelial cells where they act to increase free cytosolic Ca2+ from extracellular sources. The resulting increases in free cytosolic Ca2+, rather than in cyclic nucleotides, appear to be involved in transcellular Cl- secretion.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 945
page 945
icon of scanned page 946
page 946
icon of scanned page 947
page 947
icon of scanned page 948
page 948
icon of scanned page 949
page 949
icon of scanned page 950
page 950
icon of scanned page 951
page 951
icon of scanned page 952
page 952
icon of scanned page 953
page 953
Version history
  • Version 1 (September 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts