Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114229

The noncalcemic analogue of vitamin D, 22-oxacalcitriol, suppresses parathyroid hormone synthesis and secretion.

A J Brown, C R Ritter, J L Finch, J Morrissey, K J Martin, E Murayama, Y Nishii, and E Slatopolsky

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Brown, A. in: JCI | PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Ritter, C. in: JCI | PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Finch, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Morrissey, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Martin, K. in: JCI | PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Murayama, E. in: JCI | PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Nishii, Y. in: JCI | PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Slatopolsky, E. in: JCI | PubMed | Google Scholar

Published September 1, 1989 - More info

Published in Volume 84, Issue 3 on September 1, 1989
J Clin Invest. 1989;84(3):728–732. https://doi.org/10.1172/JCI114229.
© 1989 The American Society for Clinical Investigation
Published September 1, 1989 - Version history
View PDF
Abstract

1,25-Dihydroxyvitamin D (1,25-(OH)2D3) directly suppresses the secretion and synthesis of PTH in vivo and in cell culture. This compound has been used to treat secondary hyperparathyroidism associated with renal failure, but in some patients prolonged treatment with 1,25-(OH)2D3 results in hypercalcemia. An analogue of 1,25-(OH)2D3 with little or no calcemic activity, 22-oxacalcitriol (OCT), was recently developed. We confirmed this lack of calcemic activity by acute and chronic administration to normal rats. A single intraperitoneal injection of vehicle (propylene glycol), OCT, or 1,25-(OH)2D3 (1.0 micrograms/rat) increased calcium by 0.32, 0.30, and 1.40 mg/dl, respectively. When rats were given daily injections of vehicle or 0.5 micrograms of either 1,25-(OH)2D3 or OCT for 4 d, calcium did not change in the rats receiving vehicle or OCT, but increased from 8.4 to 11.4 mg/dl in the rats treated with 1,25-(OH)2D3. In primary cultures of bovine parathyroid cells, 10 nM OCT was as active as 10 nM 1,25-(OH)2D3, suppressing PTH release by 33%. This suppression is due, at least in part, to blocking of transcription of the PTH gene. Using a probe prepared by random prime labeling of an Msp I fragment of plasmid PTHm122, we found that a single 40-ng dose of OCT or 1,25-(OH)2D3 depressed PTH mRNA levels by 70-80% by 48 h when compared with vehicle. Thus, OCT is a very effective suppressor of PTH secretion with virtually no calcemic activity. This analogue may be a valuable tool for the treatment of secondary hyperparathyroidism.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 728
page 728
icon of scanned page 729
page 729
icon of scanned page 730
page 730
icon of scanned page 731
page 731
icon of scanned page 732
page 732
Version history
  • Version 1 (September 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts