Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

Platelet isoforms of platelet-derived growth factor stimulate fibroblasts to contract collagen matrices.
R A Clark, … , M J Murray, J M McPherson
R A Clark, … , M J Murray, J M McPherson
Published September 1, 1989
Citation Information: J Clin Invest. 1989;84(3):1036-1040. https://doi.org/10.1172/JCI114227.
View: Text | PDF
Research Article

Platelet isoforms of platelet-derived growth factor stimulate fibroblasts to contract collagen matrices.

  • Text
  • PDF
Abstract

Fibroplasia and angiogenesis are essential components of tissue repair when substantial tissue has been lost at a site of injury. Platelets and monocyte/macrophages accumulate at these sites and release a variety of growth factors that are thought to initiate and sustain the repair. Often the involved tissue contracts, a process that can markedly reduce the amount of fibroplasia and angiogenesis necessary for the reestablishment of organ integrity. Such tissue contraction occurs over hours or days, a much slower time course than the rapid, reversible contraction of muscle tissue. Fibroblasts, which are rich in f-actin bundles, appear to be responsible for wound contraction. However, the signals that stimulate contraction are not known. Using cultured fibroblasts, which are also rich in f-actin bundles, we demonstrate the platelet and monocyte isoforms of platelet-derived growth factor (PDGF; AB and BB) but not PDGF-AA, can stimulate fibroblasts to contract collagen matrix in a time course similar to that of wound contraction. In addition, PDGF appears to be the predominant fibroblast/collagen gel contraction activity released from platelets. Vasoactive agonists known to stimulate smooth and striated muscle contraction do not stimulate fibroblast-driven collagen gel contraction.

Authors

R A Clark, J M Folkvord, C E Hart, M J Murray, J M McPherson

×

Loading citation information...
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts