Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

Reflex increase in blood pressure during the intracoronary administration of adenosine in man.
D A Cox, … , A P Selwyn, P Ganz
D A Cox, … , A P Selwyn, P Ganz
Published August 1, 1989
Citation Information: J Clin Invest. 1989;84(2):592-596. https://doi.org/10.1172/JCI114203.
View: Text | PDF
Research Article

Reflex increase in blood pressure during the intracoronary administration of adenosine in man.

  • Text
  • PDF
Abstract

Infusion of adenosine (0.022-2.2 mg/min) into the left anterior descending (LAD) coronary artery of 26 patients produced a dose-dependent increase in blood pressure without a change in heart rate. At adenosine 2.2 mg/min, systolic pressure rose by 21.0 +/- 2.2 mmHg from 134 +/- 4.3 mmHg (P less than 0.001) and diastolic pressure increased by 10.4 +/- 1.1 mmHg from 76 +/- 1.9 mmHg (P less than 0.001). The rise in arterial pressure was associated with a 22 +/- 3.4% increase in systemic vascular resistance (P less than 0.01) and no change in cardiac output (-2.8 +/- 4.3%, P = NS). Plasma norepinephrine levels rose by 40 +/- 14% from 105 +/- 9 pg/ml (P less than 0.05) and epinephrine levels by 119 +/- 31% from 37 +/- 9 pg/ml (P less than 0.01). Right atrial infusion of adenosine produced insignificant hemodynamic effects, suggesting that systemic spillover of adenosine was not responsible for the observed effects. In 20 cardiac transplant patients with denervated hearts, LAD infusion of adenosine (2.2 mg/min) produced no change in systolic pressure (-0.1 +/- 1.6 mmHg from 139 +/- 3.4 mmHg, P = NS) and a decrement in diastolic pressure (-4.7 +/- 1.2 mmHg from 98 +/- 2.5 mmHg, P less than 0.01). Thus, infusion of adenosine into the LAD coronary artery causes a reflex increase in arterial pressure due to a rise in systemic vascular resistance, probably as a result of increased sympathetic discharge. This reflex pathway may be of importance in disease states such as myocardial ischemia, in which myocardial adenosine levels are elevated.

Authors

D A Cox, J A Vita, C B Treasure, R D Fish, A P Selwyn, P Ganz

×

Loading citation information...
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts