Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114039

Ca2+-activated K+ efflux limits complement-mediated lysis of human erythrocytes.

J A Halperin, C Brugnara, and A Nicholson-Weller

Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Halperin, J. in: JCI | PubMed | Google Scholar

Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Brugnara, C. in: JCI | PubMed | Google Scholar

Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Nicholson-Weller, A. in: JCI | PubMed | Google Scholar

Published May 1, 1989 - More info

Published in Volume 83, Issue 5 on May 1, 1989
J Clin Invest. 1989;83(5):1466–1471. https://doi.org/10.1172/JCI114039.
© 1989 The American Society for Clinical Investigation
Published May 1, 1989 - Version history
View PDF
Abstract

The lytic effect of complement on human erythrocytes has been reported by others to increase when Na+ is substituted for K+ in the external medium. In this paper we have investigated the hypothesis that net loss of K+ through a K+ transport pathway protects erythrocytes from complement-induced colloidosmotic swelling and lysis. Antibody-sensitized human erythrocytes containing different intracellular cation concentrations (nystatin treatment) were exposed to low concentrations of guinea pig serum in media of different cation composition; complement lysis was assessed by the release of hemoglobin and the volume of the surviving cells estimated by their density distribution profiles. Complement-dependent swelling and lysis of erythrocytes (a) were limited by the presence of an outwardly directed K+ electrochemical gradient and (b) were enhanced by carbocyanine, a specific inhibitor of the Ca2+-activated K+ transport pathway, and by absence of Ca2+ in the external medium. We propose that during complement activation a rising cytosolic calcium triggers the Ca2+-activated K+ permeability pathway, the Gardos effect, produces a net K+, Cl- and water loss, and thus limits the colloidosmotic swelling and lysis of erythrocytes.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1466
page 1466
icon of scanned page 1467
page 1467
icon of scanned page 1468
page 1468
icon of scanned page 1469
page 1469
icon of scanned page 1470
page 1470
icon of scanned page 1471
page 1471
Version history
  • Version 1 (May 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts