Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

Functional effects on glomerular hemodynamics of short-term chronic cyclosporine in male rats.
S C Thomson, … , F Gabbai, R C Blantz
S C Thomson, … , F Gabbai, R C Blantz
Published March 1, 1989
Citation Information: J Clin Invest. 1989;83(3):960-969. https://doi.org/10.1172/JCI113982.
View: Text | PDF
Research Article

Functional effects on glomerular hemodynamics of short-term chronic cyclosporine in male rats.

  • Text
  • PDF
Abstract

We evaluated the effects of chronic cyclosporine (CsA) administration on the determinants of nephron filtration rate (SNGFR) using micropuncture techniques (mp) in male Munich-Wistar rats. Animals received CsA (30 mg/kg SQ) in olive oil daily for 8 d before mp. Controls (PFC) were pair fed. SNGFR, glomerular capillary hydrostatic pressure gradient (delta P), nephron plasma flow (SNPF), plasma protein oncotic pressure (pi A), and glomerular ultrafiltration coefficient (LpA) were quantitated in each experiment. CsA was associated with a lower SNGFR due to decreases in SNPF and a major reduction in delta P but no decrease in LpA. Plasma volume expansion (PVE) caused SNGFR, delta P, and SNPF to increase in both CsA and PFC without eliminating the differences between CsA and PFC. CsA/PVE rats responded normally to angiotensin II (AII) infusion indicating that the low delta P associated with CsA is not due to unresponsiveness to AII. Prior renal denervation caused SNGFR and SNPF to increase in CsA-treated animals but failed to alter the reduction in glomerular capillary pressure after CsA or to eliminate the glomerular hemodynamic differences between treated animals and pair-fed controls. This constellation of glomerular hemodynamic abnormalities suggests that the renal effect of short-term chronic CsA administration is mediated primarily by a reduction in the afferent effective filtration pressure resulting from an imbalance between pre- and postglomerular vascular resistances.

Authors

S C Thomson, B J Tucker, F Gabbai, R C Blantz

×

Loading citation information...
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts