Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113516

Videomicroscopic demonstration of defective cholinergic arteriolar vasodilation in atherosclerotic rabbit.

H Yamamoto, C Bossaller, J Cartwright Jr, and P D Henry

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Yamamoto, H. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Bossaller, C. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Cartwright, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Find articles by Henry, P. in: JCI | PubMed | Google Scholar

Published June 1, 1988 - More info

Published in Volume 81, Issue 6 on June 1, 1988
J Clin Invest. 1988;81(6):1752–1758. https://doi.org/10.1172/JCI113516.
© 1988 The American Society for Clinical Investigation
Published June 1, 1988 - Version history
View PDF
Abstract

In atherosclerotic rabbits (SCLER), decreases in vascular resistance in response to acetylcholine (ACH), an endothelium-dependent agent, are suppressed, whereas those to nitroprusside (NP), an endothelium-independent vasodilator, are preserved. To determine whether defective vasodilation in SCLER is related to altered reactivity of resistance vessels, we visualized arterioles of rabbit cremaster muscle by videomicroscopy. Arteriolar diameter was monitored during topical (superfusional) delivery of ACh and NO, interventions that did not affect systemic hemodynamics. Diameter changes in response to NP (0.01-100.0 microM) did not differ between SCLER and controls; maximal dilations amounted to 110 +/- 10% (mean +/- SE). In contrast, responses to ACH (0.001-100 microM) differed; maximal dilations averaged 54 +/- 4% in SCLER and 124 +/- 9% in controls (P less than 0.001). These differences persisted after blockade with phentolamine, propranolol, and indomethacin. Phenidone and hydroquinone blockers of endothelium-dependent vasodilation, inhibited arteriolar dilation to ACH without affecting that to NP. Microvascular responses to intra-arterial drug were similar to those elicited by topical drug. Thus, hypercholesterolemia and atherosclerosis in the rabbit appear to produce a microvascular defect characterized by an impaired endothelium-dependent dilation and a preserved endothelium-independent dilation. This defect could play a role in limiting vasodilator reserve in atherosclerosis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1752
page 1752
icon of scanned page 1753
page 1753
icon of scanned page 1754
page 1754
icon of scanned page 1755
page 1755
icon of scanned page 1756
page 1756
icon of scanned page 1757
page 1757
icon of scanned page 1758
page 1758
Version history
  • Version 1 (June 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need Help? E-mail the JCI

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts