Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113472

Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways.

R C Strunk, D M Eidlen, and R J Mason

Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206.

Find articles by Strunk, R. in: PubMed | Google Scholar

Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206.

Find articles by Eidlen, D. in: PubMed | Google Scholar

Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206.

Find articles by Mason, R. in: PubMed | Google Scholar

Published May 1, 1988 - More info

Published in Volume 81, Issue 5 on May 1, 1988
J Clin Invest. 1988;81(5):1419–1426. https://doi.org/10.1172/JCI113472.
© 1988 The American Society for Clinical Investigation
Published May 1, 1988 - Version history
View PDF
Abstract

The serum complement system is a major mediator of inflammation reactions. Two of the complement proteins, the third (C3) and fifth (C5) components, are precursors of potent phlogistic molecules, C3a and C5a. C5a has potent chemotactic activity and plays an active role in pulmonary inflammation. We present evidence suggesting that several complement proteins, including C5, are synthesized locally in the lung in alveolar type II epithelial cells. Lung tissue from normal mice synthesized and secreted C5 protein similar to the C5 protein in mouse serum, whereas lung tissue from C5-deficient mice did not. Lung tissues from both normal and C5-deficient mice synthesized C3. Rat lung tissue synthesized and secreted C5, as well as C2, C4, C3, and factor B. Cultures of type II cells (95% type II cells, 5% macrophages) regularly synthesized all these proteins. In contrast, cultures of macrophages alone synthesized large amounts of C2 and factor B, and in some experiments C3 and C4, but never C5. The C5 synthesized by the rat cells was slightly larger than serum C5 (200 kD compared with 180 kD) and was not processed to the two-chain molecule seen in serum. Rat lung tissue and purified type II cells contained C5 mRNA with the same molecular mass as the C5 mRNA in rat liver and in mouse lung and liver. Human type II cells also synthesized C5, as well as C2, C4, C3, and factor B. Human pulmonary macrophages synthesized only C2, factor B, and, in some experiments, C3. Synthesis of complement proteins in cells that line the alveolar wall may provide a local source of these proteins for inflammatory responses in the lung. Local synthesis of complement proteins could be regulated independently of the synthesis in the liver.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1419
page 1419
icon of scanned page 1420
page 1420
icon of scanned page 1421
page 1421
icon of scanned page 1422
page 1422
icon of scanned page 1423
page 1423
icon of scanned page 1424
page 1424
icon of scanned page 1425
page 1425
icon of scanned page 1426
page 1426
Version history
  • Version 1 (May 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts