Abstract

Platelet-adhesive protein-tumor cell interaction was studied in vitro and in vivo. Monoclonal antibody 10E5, which inhibits binding of fibronectin and von Willebrand factor to the platelet membrane glycoprotein GPIIb-GPIIIa complex, inhibited the binding of mouse CT26 and human HCT8 colon carcinoma cells to platelets by 63-65%, whereas an irrelevant monoclonal antibody, 3B2, had no effect. Monoclonal antibody 6D1, which inhibits binding of von Willebrand factor to GPIb, also had no effect. RGDS, a tetrapeptide that represents the adhesive domain of fibronectin and von Willebrand factor inhibited binding of the tumors to platelets by 64-69%. Monospecific polyclonal antifibronectin antibody inhibited binding by 60-82%; anti-von Willebrand factor antibody inhibited binding by 75-81%. In vivo, polyclonal monospecific anti-mouse von Willebrand factor antibody inhibited pulmonary metastases induced by CT26 tumor cells by 53-64%, B16a amelanotic melanoma cells by 45% and T241 Lewis bladder cells by 46% without induction of thrombocytopenia. Pulmonary metastases with CT26 cells could be inhibited by induction of thrombocytopenia, and reconstituted by infusion of either murine or human platelets. Reconstitution of pulmonary metastases with human platelets could be inhibited 77% by preincubation of human platelets with monoclonal antibody 10E5 before infusion of platelets into mice. Thus, platelets appear to contribute to metastases by their adhesive interaction with tumor cells via the adhesive proteins fibronectin and von Willebrand factor.

Authors

S Karpatkin, E Pearlstein, C Ambrogio, B S Coller

×

Other pages: