Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113325

Evidence suggesting a role for hydroxyl radical in gentamicin-induced acute renal failure in rats.

P D Walker and S V Shah

Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana 70112.

Find articles by Walker, P. in: JCI | PubMed | Google Scholar

Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana 70112.

Find articles by Shah, S. in: JCI | PubMed | Google Scholar

Published February 1, 1988 - More info

Published in Volume 81, Issue 2 on February 1, 1988
J Clin Invest. 1988;81(2):334–341. https://doi.org/10.1172/JCI113325.
© 1988 The American Society for Clinical Investigation
Published February 1, 1988 - Version history
View PDF
Abstract

The protective effect of hydroxyl radical scavengers and iron chelators has strongly implicated the hydroxyl radical in several models of tissue injury. Based on in vitro studies showing gentamicin-enhanced generation of reactive oxygen metabolites in renal cortical mitochondria, we examined the effect of hydroxyl radical scavengers and iron chelators in gentamicin-induced acute renal failure. Rats treated with gentamicin (G) alone (100 mg/kg, s.c. x 8 d) developed advanced renal failure (BUN 215 +/- 30 mg/dl) compared to saline-treated controls (BUN 16 +/- 1 mg/dl, P less than 0.001). In contrast, rats treated with gentamicin and either dimethylthiourea (DMTU, an hydroxyl radical scavenger, 125 mg/kg, i.p. twice a day) or deferoxamine (DFO, an iron chelator, 20 mg/day by osmotic pump) had significantly lower BUN (G + DMTU 48.8 +/- 8 mg/dl, P less than 0.001, n = 8; G + DFO 30 +/- 7 mg/dl, P less than 0.001, n = 8). In separate experiments, treatment with two other hydroxyl radical scavengers (dimethyl sulfoxide or sodium benzoate) and a second iron chelator (2,3,dihydroxybenzoic acid) had a similar protective effect on renal function (as measured by both BUN and creatinine). In addition, histological evidence of damage was markedly reduced by the interventional agents. Finally, concurrent treatment with DMTU prevented the gentamicin induced increase in renal cortical malondialdehyde content (G: 4.4 +/- 0.2 nmol/mg; G + DMTU: 3.1 +/- 0.2 nmol/mg, P less than 0.0001, n = 8) suggesting that the protective effect of DMTU was related to free radical mechanisms rather than to some other effect. Taken together, these data strongly support a role for hydroxyl radical or a similar oxidant in gentamicin-induced acute renal failure.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 334
page 334
icon of scanned page 335
page 335
icon of scanned page 336
page 336
icon of scanned page 337
page 337
icon of scanned page 338
page 338
icon of scanned page 339
page 339
icon of scanned page 340
page 340
icon of scanned page 341
page 341
Version history
  • Version 1 (February 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts