Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Familial giant cell hepatitis associated with synthesis of 3 beta, 7 alpha-dihydroxy-and 3 beta,7 alpha, 12 alpha-trihydroxy-5-cholenoic acids.
P T Clayton, … , B Egestad, J Sjövall
P T Clayton, … , B Egestad, J Sjövall
Published April 1, 1987
Citation Information: J Clin Invest. 1987;79(4):1031-1038. https://doi.org/10.1172/JCI112915.
View: Text | PDF
Research Article

Familial giant cell hepatitis associated with synthesis of 3 beta, 7 alpha-dihydroxy-and 3 beta,7 alpha, 12 alpha-trihydroxy-5-cholenoic acids.

  • Text
  • PDF
Abstract

Urinary bile acids from a 3-mo-old boy with cholestatic jaundice were analyzed by ion exchange chromatography and gas chromatography-mass spectrometry (GC-MS). This suggested the presence of labile sulfated cholenoic acids with an allylic hydroxyl group, a conclusion supported by analysis using fast atom bombardment mass spectrometry (FAB-MS). The compounds detected by FAB-MS were separated by thin layer chromatography and high performance liquid chromatography. The sulfated bile acids could be solvolyzed in acidified tetrahydrofuran, and glycine conjugates were partially hydrolyzed by cholylglycine hydrolase. Following solvolysis, deconjugation, and methylation with diazomethane, the bile acids were identified by GC-MS of trimethylsilyl derivatives. The major bile acids in the urine were 3 beta,7 alpha-dihydroxy-5-cholenoic acid 3-sulfate, 3 beta,7 alpha,12 alpha-trihydroxy-5-cholenoic acid monosulfate, and their glycine conjugates. Chenodeoxycholic acid and cholic acid were undetectable in urine and plasma. The family pedigree suggested that abnormal bile acid synthesis was an autosomal recessive condition leading to cirrhosis in early childhood.

Authors

P T Clayton, J V Leonard, A M Lawson, K D Setchell, S Andersson, B Egestad, J Sjövall

×

Full Text PDF

Download PDF (1.73 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts