Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112068

Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells.

I U Schraufstätter, D B Hinshaw, P A Hyslop, R G Spragg, and C G Cochrane

Find articles by Schraufstätter, I. in: PubMed | Google Scholar

Find articles by Hinshaw, D. in: PubMed | Google Scholar

Find articles by Hyslop, P. in: PubMed | Google Scholar

Find articles by Spragg, R. in: PubMed | Google Scholar

Find articles by Cochrane, C. in: PubMed | Google Scholar

Published September 1, 1985 - More info

Published in Volume 76, Issue 3 on September 1, 1985
J Clin Invest. 1985;76(3):1131–1139. https://doi.org/10.1172/JCI112068.
© 1985 The American Society for Clinical Investigation
Published September 1, 1985 - Version history
View PDF
Abstract

Exposure of target cells to a bolus of H2O2 induced cell lysis after a latent period of several hours, which was prevented only when the H2O2 was removed within the first 30 min of injury by addition of catalase. This indicated that early metabolic events take place that are important in the fate of the cell exposed to oxidants. In this study, we described two early and independent events of H2O2-induced injury in P388D1 macrophagelike tumor cells: activation of the glutathione cycle and depletion of cellular NAD. Glutathione cycle and hexose monophosphate shunt (HMPS) were activated within seconds after the addition of H2O2. High HMPS activity maintained glutathione that was largely reduced. However, when HMPS activity was inhibited--by glucose depletion or by incubation at 4 degrees C--glutathione remained in the oxidized state. Total pyridine nucleotide levels were diminished when cells were exposed to H2O2, and the breakdown product, nicotinamide, was recovered in the extracellular medium. Intracellular NAD levels fell by 80% within 20 min of exposure of cells to H2O2. The loss of NADP(H) and stimulation of the HMPS could be prevented when the glutathione cycle was inhibited by either blocking glutathione synthesis with buthionine sulfoximine (BSO) or by inhibiting glutathione reductase with (1,3-bis) 2 chlorethyl-1-nitrosourea. The loss of NAD developed independently of glutathione cycle and HMPS activity, as it also occurred in BSO-treated cells.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1131
page 1131
icon of scanned page 1132
page 1132
icon of scanned page 1133
page 1133
icon of scanned page 1134
page 1134
icon of scanned page 1135
page 1135
icon of scanned page 1136
page 1136
icon of scanned page 1137
page 1137
icon of scanned page 1138
page 1138
icon of scanned page 1139
page 1139
Version history
  • Version 1 (September 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts