JCI The Journal of Clinical Investigation

Decreased serum triiodothyronine in starving rats is due primarily to diminished thyroidal secretion of thyroxine.

W B Kinlaw, ..., H L Schwartz, J H Oppenheimer

J Clin Invest. 1985;75(4):1238-1241. https://doi.org/10.1172/JCI111821.

Research Article

Although thyroxine (T4) 5'-deiodinase activity is diminished in liver homogenates of starved rats, no information is available regarding the effect of starvation on net T4 to triiodothyronine (T3) conversion in the intact rat. It appeared important to clarify this relationship since rat liver homogenates are widely used as a model for the study of the factors responsible for reduced circulating T3 in chronically ill and calorically deprived patients. In contrast to the expected selective decrease in circulating T3 levels in calorically restricted humans due to diminished T4 to T3 conversion, 5 d of starvation of two groups of male Sprague-Dawley rats resulted, paradoxically, in a greater decrease in serum T4 than in serum T3 levels. Kinetic studies show that starvation is associated with no change in the metabolic clearance rate (MCR) of T3, a 20% increase in the MCR of T4, a 67% reduction in turnover rate of T4, but only a 58% reduction in the turnover rate of T3. Moreover, in the first group of rats studied, direct chromatographic analysis of the isotopic composition of total body homogenates after the injection of 125I-T4 showed that 21.8% of T4 is converted to T3 in control rats and 28.8% in starved rats, suggesting that virtually all extrathyroidal T3 in starved and control rats is derived from the peripheral conversion of T4, [...]

Find the latest version:

Decreased Serum Triiodothyronine in Starving Rats is Due Primarily to Diminished Thyroidal Secretion of Thyroxine

W. B. Kinlaw, H. L. Schwartz, and J. H. Oppenheimer

Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

Although thyroxine (T₄) 5'-deiodinase activity is diminished in liver homogenates of starved rats, no information is available regarding the effect of starvation on net T₄ to triiodothyronine (T₃) conversion in the intact rat. It appeared important to clarify this relationship since rat liver homogenates are widely used as a model for the study of the factors responsible for reduced circulating T₃ in chronically ill and calorically deprived patients. In contrast to the expected selective decrease in circulating T₃ levels in calorically restricted humans due to diminished T₄ to T₃ conversion, 5 d of starvation of two groups of male Sprague-Dawley rats resulted, paradoxically, in a greater decrease in serum T₄ than in serum T₃ levels. Kinetic studies show that starvation is associated with no change in the metabolic clearance rate (MCR) of T₃, a 20% increase in the MCR of T₄, a 67% reduction in turnover rate of T₄, but only a 58% reduction in the turnover rate of T₃. Moreover, in the first group of rats studied, direct chromatographic analysis of the isotopic composition of total body homogenates after the injection of ¹²⁵I-T₄ showed that 21.8% of T₄ is converted to T₃ in control rats and 28.8% in starved rats, suggesting that virtually all extrathyroidal T₃ in starved and control rats is derived from the peripheral conversion of T4, and that there is little or no direct thyroidal secretion of T₃. Our findings strongly point to a reduced thyroidal secretion of T₄ as the primary cause of the observed reduction in circulating T₃. Since the mechanisms leading to reduced levels of plasma T₃ differ in humans and rats, it may be important to reexamine the use of liver homogenate preparations as models for study of the pathogenesis of the "low T₃ syndrome" in humans.

Introduction

In man, the low concentration of serum triiodothyronine $(T_3)^1$ associated with starvation and catabolic disease results from diminished peripheral conversion of thyroxine (T_4) to T_3 . This conclusion is based primarily on the finding that, in starvation, the turnover of T_3 is more markedly reduced than the turnover of T_4 , and that the bulk of circulating T_3 is derived from the

Address correspondence to Dr. Oppenheimer.

Received for publication 21 August 1984 and in revised form 14 November 1984.

Volume 75, April 1985, 1238-1241

monodeiodination of T_4 rather than direct thyroidal secretion (1, 2).

Experimental efforts to elucidate the biochemical basis and possible functional significance of the "low T₃ syndrome" have prompted the widespread use of animal models. The starving rat is most commonly used because in this model both the circulating level of T₃ and the in vitro conversion of T₄ to T₃ in liver homogenates are reduced (3-6). Several reports indicate, however, that the relative reduction of the plasma T₄ observed in the starved rat exceeds that of T₃ (3, 7), precisely the opposite of the expected consequence of diminished fractional conversion. Moreover, the low thyroid-stimulating hormone (TSH) levels reported in this model (8, 9) further suggest that reduced thyroidal secretion of T₄, rather than impaired monodeiodination, could fully account for the diminished circulating T₃. Nevertheless, we were unaware of any studies that attempt to quantitate the effects of starvation on the kinetics of iodothyronine metabolism in vivo. We therefore determined, in this study, the effects of starvation on T₄ and T₃ plasma turnover rates and assessed T₄ to T₃ conversion in vivo from an analysis of the isotopic composition of whole body homogenates.

Methods

Male Sprague-Dawley rats weighing 175–200 g were obtained from Bio-Lab, Inc. (White Bear Lake, MN) and housed individually. Control rats had free access to food (Wayne Lab-Blox, Allied Mills, Inc., Chicago, IL). The experimental groups in all cases were used for study after 96 h of complete starvation. Water was always freely available to both groups. ¹²⁵I-labeled T₄ (¹²⁵I-T₄) and T₃ (¹²⁵I-T₃) were obtained from Abbott Laboratories, North Chicago, IL. ¹³¹I-labeled T₃ (¹³¹I-T₃) was prepared in the laboratory as previously described (10). All isotopic preparations were checked for purity by paper chromatography using the system of Bellabarba et al. (t-amyl alcohol/hexane/ammonia, 5:1: 6, vol/vol) (11). Contaminating ¹²⁵I-T₃ in ¹²⁵I-T₄ preparations was found to be <0.8% in all cases. Less than 1% ¹²⁵I-T₄ was observed in the radiolabeled T₃.

The kinetics of T₃ and T₄ metabolism were studied in two separate experiments in which rats received intravenous injections of tracer doses (<10 ng/100 g body wt) of 125I-T3 or 125I-T4. Blood was sampled from the tail veins 10 min before injection and 5 min, 3, 6, 15, and 24 h after injection. Residual hormone in plasma was separated from ¹²⁵I-iodide by precipitation with TCA. We have shown that TCA precipitation yields values for T₃ that are not consistently different from those resulting from chromatographic techniques (12). Metabolic clearance rate (MCR), fractional removal rates, and volume of distribution (V_d) were calculated using noncompartmental methods. The interval from t = 0 to t = 24 h was integrated with graphic displays of the data. The interval from t = 24 h to $t = \infty$ was calculated by use of equations previously defined (13). Plasma samples taken before injection of isotope were used for measurement of immunoassayable T₄, using a Quantitope kit (Kallestad Laboratories, Inc., Austin, TX). Unextracted plasma or serum was used for this assay, so we tested for possible changing specificity due to alterations in serum components resulting from experimental manipulation. Recovery of added T₄ (2.5-22 μ g/dl) was measured in pools of serum of control and starved rats.

^{1.} Abbreviations used in this paper: CR, conversion ratio; $^{125}\text{I-T}_3$, $^{125}\text{I-labeled}$ T₃; $^{125}\text{I-H}_3$, $^{125}\text{I-labeled}$ T₄; $^{131}\text{I-T}_3$, $^{131}\text{I-labeled}$ T₃; MCR, metabolic clearance rate; PR, production rate; PTU, propylthiouracil; T₃, triiodothyronine; T₄, thyroxine; TSH, thyroid-stimulating hormone; V_4 , volume of distribution.

J. Clin. Invest.

[©] The American Society for Clinical Investigation, Inc. 0021-9738/85/04/1238/04 \$1.00

Recovery was $103.8\pm6.0\%$ and $101.4\pm2.9\%$ in control and starved pools, respectively. T₃ was measured by the method of Surks et al. (14). Hormone production rates (PR) were estimated from the product of the MCR and the plasma hormone concentration.

The rate of conversion of T₄ to T₃ in the whole rat was measured as previously described (15) in rats from the group used for the first turnover studies. Doses of $^{125}\text{I-T}_4$ (100 $\mu\text{Ci/rat}$) were injected via the tail vein. 2 mg of iodide were simultaneously injected intraperitoneally to prevent recycling of radioactive iodide. Rats were killed 48 h later. To correct for spurious deiodination during the analytical procedure other rats were similarly injected and killed within 2 min. Intestinal contents and the urine in the bladder were removed. The entire carcass was then homogenized with added ice-cold water containing 10⁻⁴ M propylthiouracil (PTU). Two 5-g aliquots of homogenate were extracted with absolute ethanol containing 10⁻⁴ M PTU until 80-90% of the counts were removed. 131I-T3 was added to the extract to serve as a marker for T₃ during chromatographic isolation of the ¹²⁵I-T₃ derived from the injected 125I-T₄ and to allow corrections for losses during the isolation procedure. Further, a constant 125I-T₃ to 131I-T₃ ratio was used as a strict criterion of purity of the isolated 125I-T₃. The extracts were concentrated in vacuo and applied to 3MM paper (Whatman Inc., Clifton, NJ) together with unlabeled T₃ and T₄. The products were separated by chromatography in t-amyl alcohol/hexane/ammonia. The T₃ area was then visualized under ultraviolet light, eluted with methanol/ammonia (95:5), and rechromatographed. This procedure was repeated for a total of three runs. The final chromatogram was stained with diazotized sulfanilic acid (16) and the T₃ area cut into 0.5-cm pieces. The ratio of $^{125}\text{I-T}_3$ (from $^{125}\text{I-T}_4$) to $^{131}\text{I-T}_3$ was determined, with appropriate corrections for spillover from the 131I channel to the 125I channel as well as for recovery of the 131I-T3. Carcass content of 125I-iodide was estimated from chromatography of a small aliquot of the original extract. The percent of total 125I counts present in the carcass as T₃ was calculated from the equation (15):

$$(^{125}I/^{131}I) \times ^{131}I-T_3 \times 100/^{125}I$$
,

where $^{125}I/^{131}I$ is the corrected ratio of isotopes in the T_3 area of the chromatogram; $^{131}I-T_3$, the known amount of counts added to the original extract; and ^{125}I , the total counts of this isotope present in the carcass. The percent of $^{125}I-T_4$ remaining in the carcass was taken as the difference between the total ^{125}I radioactivity and the fraction of ^{125}I -iodide and $^{125}I-T_3$. The fractional turnover of T_4 was estimated from the percent of T_4 and the residual radioactivity in a weighed aliquot of the carcass homogenate. The fractional turnover of T_3 was similarly measured in four separate rats killed 18 h after the intravenous injection of $^{125}I-T_3$. The conversion ratio (CR) was calculated as follows (14):

 $CR = 200(T_3*/T_4*)/([\lambda_3/\lambda_4] - 1),$

where the factor 200 is used to account for random deiodination in the 3' and 5' positions (15) and expression of the result as a percent; T_3*/T_4* is the isotopic ratio in the carcass; and λ_3 and λ_4 are the fractional removal rates of the hormones.

Results

Starvation resulted in the reduction of serum T₄ in group I and group II rats to 21 and 32% of the basal levels, respectively (Table I). In both cases the decreases in circulating T_3 were proportionally smaller, to 42 and 48% of the respective fed values. The MCR of T₄ was increased in both groups by 20%, whereas that of T₃ appeared unaffected. Despite the small increase in the MCR of T₄, the turnover of this hormone was markedly reduced, to 28 and 32% of control in the two starved groups. In each experiment, the reduction in T₄ turnover was proportionally greater than that for T₃. The latter was reduced only to 40 and 46% of control values in groups I and II, respectively. The disproportionate reduction of T₄ turnover rate is the opposite of the reduction expected from major impairment of fractional T₄ to T₃ conversion. Rather, the magnitude of the decrease in plasma T₄ levels (68 and 79%) in the face of only a 20% increase in the MCR of T₄ strongly suggested that the major cause of the hypothyroxinemia is reduced thyroidal secretion. Though it seemed unlikely, we could not entirely exclude the theoretical possibility that diminished fractional conversion of T₄ to T₃ was obscured by a relative increase in T₃ secretion.

To address this issue directly, we quantitated conversion of ¹²⁵I-T₄ to ¹²⁵I-T₃ in a group of rats studied simultaneously with the first group of rats subjected to turnover studies (Table II). Normal rats exhibited a conversion ratio of 21.8±5.1% (mean±SD) that did not differ statistically from the ratio in starved animals of 28.8±14.3%.

Discussion

Our finding that starvation in the rat results in a marked reduction in turnover of T_4 is consistent with previous reports of lowered levels of T_4 and TSH in starved rats (8, 9). Since the turnover rate of T_4 actually decreased more sharply in

Table I. Plasma Thyroid Hormone Kinetics in Two Groups of Starved Rats

	Group I		Group II	
	Control	Starved	Control	Starved
	n = 4	n = 5	n=6	n = 6
Plasma T ₄ (ng/ml)	47±2*	10±6‡	62±5	20±5‡
MCR T_4 (ml/100 g body wt/d)	30±2	36±4‡	34.3±3.1	41.0±8.2
PR T ₄ (ng/100 g body wt/d)	1,400±11	390±250‡	2120±215	804±164‡
λ4 (h)	0.048 ± 0.002	0.050±0.009	0.059±0.010	0.074±0.023
$(V_{\rm d})_{\rm T4}$ (ml/100 g body wt)	25.8±1.3	27.6±1.6	24.7±4.1	23.7±2.5
Plasma T ₃ (ng/ml)	0.73±0.09	0.31±0.08‡	0.54±0.05	0.26±0.05‡
MCR T_3 (ml/100 g body wt/d)	315±78	314±89	366±53	335±41
PR T ₃ (ng/100 body wt/d)	233±88	93±20‡	196±34	89±25‡
λ3 (h)	0.085 ± 0.041	0.104±0.018	0.102±0.077	0.093±0.028
$(V_{\rm d})_{\rm T_3}$ (ml/100 g body wt)	150.1±107.2	133.1±50.5	194.4±68.8	162.6±38.4

 $\lambda 3$ and $\lambda 4$ indicate the fractional removal rates of T₃ and T₄ as determined by noncompartmental analysis. * Mean±SD. ‡ Different from control; P < 0.05 by t test.

Table II. T₄ to T₃ Conversion in Whole Rats

	Control	Starved	
	n = 4		
CR (%)	21.8±5.1*	$28.8 \pm 14.3 \ (n = 4)$	
λ3 (/h)	0.096±0.014	$0.110\pm0.016 (n = 5)$	
λ4 (/h)	0.046±0.003	$0.045\pm0.008 \ (n=4)$	

 $\lambda 3$ and $\lambda 4$ are the fractional removal rates of T₃ and T₄ determined from the residual radioactivity in the carcass 18 h and 48 h, respectively, after intravenous injection of ¹²⁵I-T₃ or ¹²⁵I-T₄.

both groups of rats studied than did the turnover rate of T_3 , there appears to be no need to postulate diminished overall conversion of T_4 to T_3 to account for the lowered levels of T_3 . The possibility that diminished conversion of T_4 to T_3 by peripheral tissues could be offset by a concomitant increase in the relative secretion of T_3 is highly unlikely since increased rather than decreased levels of TSH are generally believed to preferentially stimulate thyroidal T_3 secretion (17). Nevertheless, in conjunction with the study of the first group of rats, we attempted to measure the fractional conversion of isotopic T_4 to T_3 by chromatographic analysis of total body homogenates, as previously described from our laboratory (15). The results of these experiments provided no evidence of a decrease in the conversion ratio.

The mean conversion ratio in normal rats, 21.8%, is in general agreement with our previously published value of 17% (15) and the 22% value recently reported by Silva et al. (18), and it lies within the theoretical range of 14-24%, predicted by DiStefano et al. (19). Higher values (33 and 27%), however, have been reported by Boonnamsiri et al. (20) and Zimmerman et al. (21), respectively. If the value 21.8% is applied to the measured T₄ turnover rate in the group I rats, the corresponding PR of T₃ yields a value 110% resulting from direct measurements. Similarly, if the value 28% is applied to the PR in the starved rats of group I, the PR of T₃ from T₄ is 101% the total T₃ turnover. These findings suggest, therefore, that essentially all of the extrathyroidal T₃ in the rat is produced by peripheral conversion from thyroxine, a conclusion differing markedly from our 1971 estimate (15) that only 20% of T₃ in the rat is produced by extrathyroidal conversion. However, our earlier calculations were based on borrowed literature values for T₃ and T₄ obtained by isotopic equilibration studies performed in the preradioimmunoassay era as well as on an MCR of T4 that was considerably less than those measured in the present experiments. When, however, the conversion ratios obtained with group I rats were used in conjunction with the turnover ratios of group II rats, the calculated T₃ PR was approximately twice the PR observed by direct measurement. An examination of the data in Table I indicates that the higher PR of T₄ in the second group of rats was largely due to a higher circulating T₄. We have been impressed by the substantial variation in the level of T₄ reported in normal rats, with recent reports as low as 29 ng/ml (19) and as high as 70 ng/ml (22). To verify the validity of our methods, we carefully checked recovery of increasing concentrations of T₄ added to pooled sera samples from fed and starved euthyroid rats and fed hypothyroid rats, and with each group, we obtained nearly 100% recovery, a

finding that minimizes the possibility of a systematic analytic error. Moreover, we measured plasma T₄ in groups of rats from different suppliers. Individual groups ranged from 44±8 (mean±SD, 6/group) to 61±5 ng/ml, measurements which approximate those of our two groups of experimental rats. We therefore believe that the variation in T₄ levels is not spurious but represents the effect of as yet undefined genetic, environmental, or dietary factors. Consequently, we believe that it is likely that the conversion ratio of group II rats was lower than the value determined for group I rats. Thus, if one assumes no thyroidal T₃ secretion in these rats, one can calculate a maximal conversion ratio of 11% in the control and 13.2% in the starved group II rats, suggesting the operation of an autoregulatory system similar to that proposed by Lum et al. in humans (23). With increased concentrations of circulating T_4 , decreased fractional conversion of T_4 to T_3 would occur. We did not make any effort to test this hypothesis because of the difficulty in determining the fractional conversion of T₄ to T₃: multiple steps in the procedure, each with an inherent experimental error, lead to relatively imprecise net results. An inordinate number of rats exhibiting different basal T4 levels would be required to establish valid distinctions in conversion

Regardless of these considerations, it is clear that in the rat, in contrast to the results in humans, starvation consistently produced a greater reduction in T_4 than in T_3 turnover. Direct measurement of the conversion ratio by the isotopic technique provided no evidence for net reduction in peripheral T_4 to T_3 conversion. These results point to a reduction in thyroidal T_4 secretion as the major cause of the low T_3 levels in starved rats

Our failure to infer an overall decrease in T₄ monodeiodination contrasts with many reports of a 40-50% reduction in the rate of T₄ to T₃ conversion in liver homogenates from starving rats (3-6). Unfortunately, there are no firm data that allow a quantitative estimate of the contribution of hepatic deiodination to the circulating pool of T₃ either in the fed or starved rat. DiStefano et al. (19) have estimated that $\sim 50\%$ of the T₃ generated in the normal rat is derived from tissues that equilibrate rapidly with T₄, namely liver and kidney, whereas the remaining T₃ appears to be derived from more slowly equilibrating tissues such as muscle and brain. It is possible that the contribution of the liver to total T₄ monodeiodination is sufficiently small to obscure reduction in overall hepatic monodeiodination in the intact rat. Hypothetically, reduction in the rate of hepatic monodeiodination could be offset by augmented deiodination in other tissues. Larsen et al. (24) have shown that monodeiodination may proceed by separate enzymatic mechanisms in individual tissues and may respond in a differential manner to agents such as PTU. Moreover, Kaplan and Yaskoski (25) have shown that starvation causes a 60% increase in the rate of deiodination of hypothalamic tissue. It is possible, therefore, to postulate that increased deiodination occurs in nonhepatic tissues in starved rats. Alternatively, monodeiodination, as measured under in vitro conditions, may fail to accurately reflect the changes that occur in vivo. Under any circumstances it may be premature to assume that the biochemical mechanisms responsible for diminished monodeiodination in liver homogenates from starved rats can serve as a valid model for the pathogenesis of the low T₃ syndrome in humans.

^{*} Mean±SD.

Acknowledgments

Dr. Oppenheimer was supported by National Institutes of Health grant AM 19812 and by National Research Service training grant award AM 07203. Dr. Kinlaw was supported by National Research Service award AM 07110.

References

- 1. Vagenakis, A. G., G. I. Portnay, J. T. O'Brien, M. Rudolph, A. Arky, S. H. Ingbar, and L. E. Braverman. 1977. Effect of starvation on the production and metabolism of thyroxine and triiodothyronine in euthyroid obese patients. *J. Clin. Endocrinol. Metab.* 45:1305-1309.
- 2. Suda, A. K., C. S. Pittman, T. Shimizu, and J. B. Chambers. 1978. The production and metabolism of 3,5,3'-triiodothyronine and 3,3',5'-triiodothyronine in normal and fasting subjects. *J. Clin. Endocrinol. Metab.* 47:1311-1319.
- 3. Harris, A. R., C. S. Fang, A. G. Vagenakis, and L. E. Braverman. 1978. Effect of starvation, nutrient replacement, and hypothyroidism on *in vitro* hepatic T₄ to T₃ conversion in the rat. *Metab. Clin. Exp.* 27:1680-1690.
- 4. Kaplan, M. M., and R. D. Utiger. 1978. Iodothyronine metabolism in rat liver homogenates. *J. Clin. Invest.* 61:459-471.
- 5. Balsam, A., and S. H. Ingbar. 1978. The influence of fasting, diabetes, and several pharmacological agents on the pathways of thyroxine metabolism in rat liver. *J. Clin. Invest.* 62:415-424.
- 6. Chopra, I. J. 1980. Alterations in monodeiodination of iodothyronines in the fasting rat: effects of reduced nonprotein sulfhydryl groups and hypothyroidism. *Metab. Clin. Exp.* 29:161-167.
- 7. Oppenheimer, J. H., and H. L. Schwartz. 1980. Factors determining the level of activity of 3,5,3'-triiodothyronine-responsive hepatic enzymes in the starved rat. *Endocrinology*. 107:1460-1468.
- 8. Campbell, G. A., M. Kurez, S. Marshall, and J. Meites. 1977. Effects of starvation in rats on serum levels of follicle stimulating hormone, luteinizing hormone, thyrotropin, growth hormone and prolactin. *Endocrinology*. 100:580-587.
- 9. Harris, A. R. C., S. L. Fang, F. Azizi, L. Lipworth, A. G. Vagenakis, and L. E. Braverman. 1978. Effect of starvation in hypothalamic-pituitary-thyroid function in the rat. *Metab. Clin. Exp.* 27: 1074–1083.
- 10. Surks, M. I., and H. C. Shapiro. 1969. Preparation of high specific activity nonphenolic-ring ¹²⁵I and ¹⁴C-labeled thyroxine. *J. Clin. Endocrinol. Metab.* 29:1263–1265.
- 11. Bellabarba, D., R. Peterson, and K. Sterling. 1968. An improved method for chromatography of iodothyronines. *J. Clin. Endocrinol. Metab.* 28:305–307.
- 12. Schwartz, H. L., D. Trence, J. H. Oppenheimer, N. S. Jiang, and D. B. Jump. 1983. Distribution and metabolism of L- and D-triiodothyronine (T₃) in the rat: preferential accumulation of L-T₃ by hepatic and cardiac nuclei as a probable explanation of the differential biologic potency of T₃ enantiomers. *Endocrinology*. 113:1236-1243.

- 13. Oppenheimer, J. H., H. L. Schwartz, and M. I. Surks. 1975. Determination of common parameters of iodothyronine metabolism and distribution in man by noncompartmental analysis. *J. Clin. Endocrinol. Metab.* 41:319-324.
- 14. Surks, M. I., A. R. Schadlow, and J. H. Oppenheimer. 1972. A new radioimmunoassay for plasma L-triiodothyronine: measurements in thyroid disease and in patients maintained on hormonal replacement. *J. Clin. Invest.* 51:3104-3113.
- 15. Schwartz, H. L., M. I. Surks, and J. H. Oppenheimer. 1971. Quantitation of extrathyroidal conversion of L-thyroxine to 3,5,3'-triiodo-L-thyronine in the rat. *J. Clin. Invest.* 50:1124-1130.
- 16. Pitt-Rivers, R., and H. L. Schwartz. 1969. Iodoamino acids and related compounds. *In* Chromatographic and Electrophoretic Techniques. I. Smith, editor. William Heineman Ltd., London. Vol. I. Third ed.
- 17. Inoue, K., Y. Grimm, and M. A. Greer. 1967. Quantitative studies on iodinated components secreted by the rat thyroid gland as determined by *in situ* perfusion. *Endocrinology*. 81:946–966.
- 18. Silva, J. E., M. B. Gordon, F. R. Crantz, J. L. Leonard, and P. R. Larsen. 1984. Qualitative and quantitative differences in the pathways of extrathyroidal triiodothyronine generation between euthyroid and hypothyroid rats. *J. Clin. Invest.* 73:898–907.
- 19. DiStefano, J. J., T. K. Malone, and M. Jang. 1982. Comprehensive kinetics of thyroxine distribution and metabolism in blood and tissue pools of the rat from only six blood samples: dominance of large, slowly exchanging tissue pools. *Endocrinology*. 111:108–117.
- 20. Boonnamsiri, V., J. C. Kermode, and B. D. Thompson. 1979. Prolonged intravenous infusion of labeled iodocompounds in the rat: [1251]thyroxine and [1251]tri-iodothyronine metabolism and extrathyroidal conversion of thyroxine to tri-iodothyronine. *J. Endocrinol.* 82:235–241.
- 21. Zimmerman, C. J., M. Izumi, and P. R. Larsen. 1978. Isolation of labeled triiodothyronine from serum using affinity chromatography: application to the estimation of the peripheral T₄ to T₃ conversion in rats. *Metab. Clin. Exp.* 27:303-313.
- 22. Senga, O., C. S. Pittman, R. H. Lindsay, J. B. Chambers, and J. B. Hill. 1982. Comparison of peripheral thyroid hormone metabolism in normal rats and in rats receiving prolonged glucagon infusion. *Endocrinology*. 110:2011-2017.
- 23. Lum, S. M. C., J. T. Nicoloff, C. A. Spencer, and E. M. Kaptein. 1984. Peripheral tissue mechanism for maintenance of serum triiodothyronine values in a thyroxine-deficient state in man. *J. Clin. Invest.* 73:570-575.
- 24. Larsen, P. R., J. E. Silva, and M. M. Kaplan. 1981. Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. *Endocr. Rev.* 2:87–102.
- 25. Kaplan, M. M., and K. A. Yaskoski. 1982. Effects of congenital hypothyroidism and partial and complete food deprivation on phenolic and tyrosyl ring iodothyronine deiodination in rat brain. *Endocrinology*. 110:761–767.