Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Catabolism of very low density lipoproteins in experimental nephrosis.
D W Garber, B A Gottlieb, J B Marsh, C E Sparks
D W Garber, B A Gottlieb, J B Marsh, C E Sparks
View: Text | PDF
Research Article

Catabolism of very low density lipoproteins in experimental nephrosis.

  • Text
  • PDF
Abstract

The effects of experimental nephrosis in rats, produced by puromycin aminonucleoside, include an elevation of plasma levels of all lipoprotein density classes and the appearance of high density lipoprotein (HDL) rich in apoprotein (apo) A-I and deficient in apo A-IV and apo E. The hyperlipoproteinemia is associated with an increase in hepatic synthesis of lipoproteins. The possible role of decreased very low density lipoprotein (VLDL were obtained from nonfasting animals by ultracentrifugation at d 1.006 and included chylomicrons) catabolism and its relationship to the apolipoprotein composition of nephrotic high density lipoproteins (1.063 less than d less than 1.210, or 1.072 less than d less than 1.210 [HDL]) was explored. When 125I-VLDL was injected, the faster plasma clearance of lower molecular weight apolipoprotein B (apo BL) compared with that of higher molecular weight apo BH which is seen in normal rats was not observed in nephrotic rats. Less labeled phospholipid, apo C, and apo E were transferred from VLDL to higher lipoprotein density classes. Heparin-releasable plasma lipoprotein lipase and hepatic lipase activities were decreased by 50% in nephrotic rats compared with pair-fed controls. Perfusion of livers with medium that contained heparin released 50% less lipase activity in nephrotic rats than in controls. When heparin was injected intravenously, significant decreases in plasma levels of triglycerides and significant increases in levels of free fatty acids were observed in both groups of animals. In the nephrotic rats, 86% of the free fatty acids were in the lipoprotein fractions, as compared with 16% in the controls. Heparin treatment did not restore to normal the decreased apo BL clearance in nephrotic rats but it produced an increased amount of apo A-IV and apo E in the plasma HDL. In vitro addition of partially pure lipoprotein lipase to whole serum from nephrotic rats significantly increased the content of apo E in HDL. We conclude that the abnormal apoprotein composition of HDL in experimental nephrosis is the result of altered entry of apolipoproteins from triglyceride-rich lipoproteins, probably because of decreased lipolysis.

Authors

D W Garber, B A Gottlieb, J B Marsh, C E Sparks

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 133 15
PDF 93 1
Figure 0 10
Scanned page 256 12
Citation downloads 63 0
Totals 545 38
Total Views 583
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts