Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Role of the terminal complement pathway in experimental membranous nephropathy in the rabbit.
G C Groggel, … , W G Couser, D J Salant
G C Groggel, … , W G Couser, D J Salant
Published December 1, 1983
Citation Information: J Clin Invest. 1983;72(6):1948-1957. https://doi.org/10.1172/JCI111159.
View: Text | PDF
Research Article

Role of the terminal complement pathway in experimental membranous nephropathy in the rabbit.

  • Text
  • PDF
Abstract

Our recent observations of a complement-mediated, cell-independent mechanism of altered glomerular permeability in rat membranous nephropathy suggested a possible role for the terminal complement pathway in the mediation of proteinuria in certain forms of glomerular disease. To directly determine whether the membranolytic terminal complement components (C5b-C9) are involved in glomerular injury, we studied the development of proteinuria in normal and C6-deficient (C6D) rabbits, in both of which a membranous nephropathy-like lesion develops early in the course of immunization with cationized bovine serum albumin (cBSA) (pI 8.9-9.2). C6 hemolytic activity of C6D was 0.01% that of control rabbits. After 1 wk of daily intravenous injections of cBSA, proteinuria developed in 71% of controls (median 154, range 1-3,010 mg/24 h, n = 24), whereas none of C6D were proteinuric (median 6, range 2-12 mg/24 h, n = 12, P less than 0.01). After 1 wk of cBSA, both groups had qualitatively identical glomerular deposits of BSA, rabbit IgG, and C3 on immunofluorescence microscopy, predominantly subepithelial electron-dense deposits on electron microscopy, and minimal glomerular inflammatory cell infiltration of glomeruli. Glomeruli were isolated from individual animals after 1 wk of cBSA and deposits of rabbit IgG antibody were quantitated by a standardized in vitro assay using anti-rabbit IgG-125I. Rabbit IgG deposits were found to be similar in control (29.8 +/- 13.2, range 12.7-48.6 micrograms anti-IgG/2,000 glomeruli, n = 6) and C6D rabbits (32.6 +/- 13.8, range 16.8-48.8 micrograms anti-IgG/2,000 glomeruli, n = 5, P greater than 0.05). After 2 wk, coincident with a prominent influx of mononuclear cells and neutrophils, proteinuria developed in C6D rabbits. These results document, for the first time, a requirement for a terminal complement component in the development of immunologic glomerular injury. Since the only known action of C6 is in the assembly of the membrane attack complex, these observations suggest that the membranolytic properties of complement may contribute to glomerular damage.

Authors

G C Groggel, S Adler, H G Rennke, W G Couser, D J Salant

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 192 4
PDF 48 10
Scanned page 312 4
Citation downloads 63 0
Totals 615 18
Total Views 633
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts