Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Deficient guanine nucleotide regulatory unit activity in cultured fibroblast membranes from patients with pseudohypoparathyroidism type I. A cause of impaired synthesis of 3',5'-cyclic AMP by intact and broken cells
Michael A. Levine, … , Robert W. Downs Jr., Allen M. Spiegel
Michael A. Levine, … , Robert W. Downs Jr., Allen M. Spiegel
Published July 1, 1983
Citation Information: J Clin Invest. 1983;72(1):316-324. https://doi.org/10.1172/JCI110971.
View: Text | PDF
Research Article

Deficient guanine nucleotide regulatory unit activity in cultured fibroblast membranes from patients with pseudohypoparathyroidism type I. A cause of impaired synthesis of 3',5'-cyclic AMP by intact and broken cells

  • Text
  • PDF
Abstract

Deficient activity of the guanine nucleotide regulatory protein (G unit), an integral component of the membrane-bound adenylate cyclase complex, has been implicated as the biochemical lesion in many patients with pseudohypoparathyroidism (PHP) type I. In addition to renal resistance to parathyroid hormone in this disorder, there is decreased responsiveness of diverse tissues to hormones that act via 3',5'-cyclic AMP (cAMP). To assess whether a deficiency of G units could account for impaired adenylate cyclase activity, we studied cAMP production in intact cultured fibroblasts and fibroblast plasma membranes from five patients with PHP in response to several activators of adenylate cyclase.

Authors

Michael A. Levine, Charles Eil, Robert W. Downs Jr., Allen M. Spiegel

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 132 0
PDF 23 12
Scanned page 118 0
Citation downloads 18 0
Totals 291 12
Total Views 303
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts