Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Neuroendocrine responses to glucose ingestion in man. Specificity, temporal relationships, and quantitative aspects
Thomas F. Tse, … , J. Philip Miller, Philip E. Cryer
Thomas F. Tse, … , J. Philip Miller, Philip E. Cryer
Published July 1, 1983
Citation Information: J Clin Invest. 1983;72(1):270-277. https://doi.org/10.1172/JCI110966.
View: Text | PDF
Research Article

Neuroendocrine responses to glucose ingestion in man. Specificity, temporal relationships, and quantitative aspects

  • Text
  • PDF
Abstract

The mechanisms of postprandial glucose counterregulation—those that blunt late decrements in plasma glucose, prevent hypoglycemia, and restore euglycemia—have not been fully defined. To begin to clarify these mechanisms, we measured neuroendocrine and metabolic responses to the ingestion of glucose (75 g), xylose (62.5 g), mannitol (20 g), and water in ten normal human subjects to determine for each response the magnitude, temporal relationships, and specificity for glucose ingestion. Measurements were made at 10-min intervals over 5 h. By multivariate analysis of variance, the plasma glucose (P < 0.0001), insulin (P < 0.0001), glucagon (P < 0.03), epinephrine (P < 0.0004), and growth hormone (P < 0.01) curves, as well as the blood lactate (P < 0.0001), glycerol (P < 0.001), and β-hydroxybutyrate (P < 0.0001) curves following glucose ingestion differed significantly from those following water ingestion. However, the growth hormone curves did not differ after correction for differences at base line. In contrast, the plasma norepinephrine (P < 0.31) and cortisol (P < 0.24) curves were similar after ingestion of all four test solutions, although early and sustained increments in norepinephrine occurred after all four test solutions. Thus, among the potentially important glucose regulatory factors, only transient increments in insulin, transient decrements in glucagon, and late increments in epinephrine are specific for glucose ingestion. They do not follow ingestion of water, xylose, or mannitol.

Authors

Thomas F. Tse, William E. Clutter, Suresh D. Shah, J. Philip Miller, Philip E. Cryer

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 133 0
PDF 37 6
Scanned page 96 2
Citation downloads 14 0
Totals 280 8
Total Views 288
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts