Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Hemodynamic sequelae of regression of experimental atherosclerosis.
M L Armstrong, … , D J Piegors, F M Abboud
M L Armstrong, … , D J Piegors, F M Abboud
Published January 1, 1983
Citation Information: J Clin Invest. 1983;71(1):104-113. https://doi.org/10.1172/JCI110738.
View: Text | PDF
Research Article

Hemodynamic sequelae of regression of experimental atherosclerosis.

  • Text
  • PDF
Abstract

Regression of experimental atherosclerosis is characterized by decreased intimal thickness and luminal enlargement, but intimal fibrosis becomes more dense. We tested the hypothesis that fibrosis of arteries during regression might limit vasodilator capacity and restrict hemodynamic improvement despite luminal improvement. We studied limb, coronary, and cerebral hemodynamics in 11 normal cynomolgus monkeys, 10 monkeys given an atherogenic diet for 20 mo and 8 monkeys given a regression diet for an additional 18 mo. The atherogenic diet induced lesions of moderate severity (50-60% stenosis); owing to characteristic vessel growth during the atherogenic period, luminal size did not decrease correspondingly. Regression monkeys showed typical changes of regression with luminal enlargement but increased fibrosis. The iliac artery was perfused at constant blood flow and maximal vasodilatation was produced with papaverine. Blood flow was measured with microspheres during maximal vasodilatation in the coronary bed (adenosine) and cerebral bed (hypercapnia). In normal monkeys, minimal vascular resistances were 1.95 +/- 0.19 mm Hg/ml/min X 100 g (mean +/- SE) (limb), 0.13 +/- 0.01 (coronary), and 0.44 +/- 0.02 (cerebral). In atherosclerotic monkeys minimal resistance increased (P less than 0.05) 108, 62, and 166% in the limb, coronary, and cerebral beds, respectively. In regression monkeys, minimal resistance increased from values found in atherosclerotic animals in the limb (+22%), decreased inconsistently in the coronary bed (-19%), and decreased significantly in the cerebral bed (-44%, P less than 0.05). Thus morphologic regression was accompanied by significant hemodynamic improvement during maximal dilatation only in cerebral vessels. We conclude that increases in luminal size during regression of atherosclerotic lesions may not be associated with increases in vasodilator capacity, as intimal fibrosis may limit physiologically important hemodynamic improvement.

Authors

M L Armstrong, D D Heistad, M L Marcus, D J Piegors, F M Abboud

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 161 2
PDF 130 7
Scanned page 513 1
Citation downloads 54 0
Totals 858 10
Total Views 868
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts