Characterization of a Non-T, Non-B Human Lymphocyte (L Cell) with Use of Monoclonal Antibodies

ITS REGULATORY ROLE IN B LYMPHOCYTE FUNCTION

PETER I. LOBO, Tissue Typing Laboratory, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22903

ABSTRACT These studies investigate the role of L lymphocytes in regulating terminal B lymphocyte differentiation. L cells have abundant Fc IgG receptors and comprise 10–15% of human peripheral blood mononuclear cells (PBMC). L cells lack the conventional markers of B and T lymphocytes and in culture, do not develop into B cells, T cells, or macrophages. Additionally, use of monoclonal antibodies failed to detect on L cells, cell surface antigens specific for B cells, T cells, and macrophages.

In these studies, purified L cell subpopulations depleted of macrophages were co-cultured with autologous PBMC in the presence of pokeweed mitogen and at the end of 8 d, development of intracytoplasmic immunoglobulin (Ig) was determined. L cells were depleted of B and T cells by rosetting techniques and, in addition, by cytotoxicity techniques using monoclonal-specific antisera to T cells.

In 14 individuals, L cells when co-cultured with PBMC, enhanced Ig synthesis by 83% ± 62 SD, and also enhanced cell proliferation. Radiated L cells lost enhancing properties. To study the role of their high density Fc IgG receptors, L cells pretreated with IgG antibody-sensitized erythrocytes were used (i.e., after lysis of rosettes). Such L cells significantly inhibited Ig synthesis (by >50%) despite promoting cell proliferation. Antibody-sensitized erythrocyte-rosetted macrophages did not inhibit Ig synthesis.

Thus, positive and negative influences can be mediated by the same cell, depending on the state of Fc-receptor stimulation. Such cells may play a more prominent role in “feed-back” regulation of Ig synthesis by virtue of having abundant Fc IgG receptors.

INTRODUCTION

Delineation of normal immune-regulatory mechanism is currently a subject of great interest. Studies in both animals and humans have clearly defined the role of T lymphocytes in both help and suppression of immunoglobulin synthesis (1–4). However, the immunoregulatory role of other non-T lymphocyte subsets has received little attention.

Of particular interest is the immunoregulatory role of L lymphocytes, a non-T, non-B lymphocyte, that is uniformly rich in Fc IgG receptors (5–7). L cells comprise 10–15% of the total lymphocyte population in normal human blood and differ from other “third” population cells by their lack of complement (C3) receptors, their inability to develop membrane immunoglobulin in culture (like immature B cells) and their inability to develop into macrophages in culture (like promonocytes) (7–9, 16). This quantitatively prominent Fc IgG receptor-bearing subset of cells could be a likely candidate in immune regulation, especially in view of studies of Moretta et al. (4) demonstrating that T cells with Fc IgG receptors are suppressors of immunoglobulin synthesis.

Our study is aimed at investigating the functional role of human L cells in regulating B cell differentiation into plasma cells using an in vitro assay system that has previously been used to study both T “helper” and “suppressor” activity in humans (4, 10, 11).

METHODS

Isolation of peripheral blood mononuclear cells (PBMC). PBMC were separated from fresh heparinized blood (50 U

1 Abbreviations used in this paper: Con A, concanavalin A; EA, erythrocytes sensitized with anti-Rh antibody; EAC, erythrocyte sensitized with rabbit IgM antibody and fresh
beef heparin/ml blood) from healthy, adult donors by Ficoll-Hypaque density gradient centrifugation and then finally resuspended in RPMI 1640 (Grand Island Biological Co., Grand Island, N. Y.) containing 80 μg/ml glutamine, 50 μg/ml streptomycin, and 50 μg/ml penicillin (RPMI culture medium).

Identification of mononuclear subpopulations. B lymphocytes were identified by the presence of intrinsic membrane immunoglobulin using a fluorescein-conjugated (FITC) polyvalent goat antihuman immunoglobulin (Ig) (Hyland Diagnostics Div., Travenol Laboratories, Inc., Deerfield, Ill.). Extrinsic surface Ig present on non-B cells that could be confused for B cells were removed by a brief 37°C incubation as described (6). T lymphocytes were enumerated by two techniques: (a) binding of lymphocytes to unsensitized sheep erythrocytes to form rosettes (E rosettes) using described methods (6), and (b) by indirect immunofluorescence using a T cell mononclonal antibody (IgG2AK produced by a murine hybridoma cell line (Tm, Hybritech Incorporated, La Jolla, Calif.) Lymphocytes were identified as non-T cells bearing Fc IgG receptors but lacking markers of B lymphocytes, i.e., C3 receptors and surface Ig. Previously used markers of Fc IgG were used (7) i.e., (a) binding of cytophilic IgG and (b) binding of human O+ erythrocytes sensitized with anti-Rh antibody (EA). Cells with C3 receptors were identified by a previously used technique (7), i.e., rosette formation with sheep erythrocytes sensitized with rabbit IgM antibody and fresh mouse serum as a source of complement. Macrophages were identified by ingestion of latex particles (0.81 μm Latex, Difco Laboratories, Detroit, Mich.) and by euglycine staining of lysosomes.

Isolation of lymphocyte subpopulation. Freshly isolated PBMC in RPMI supplemented with 20% fetal calf serum (Grand Island Biological Co.) were initially depleted of macrophages by a single incubation (37°C, 1 h) in plastic petri dishes (10–20 × 10^6 cells/dish). With this technique, macrophage contamination was reduced to <10%. This initial macrophage depletin eliminated the problem of clumping of rosettes and nonrosetted cells that we encountered after overnight incubation in the cold. To isolate L cells, macrophage-depleted PBMC in Ca++ and Mg++ free Hanks’ balanced salt solution (HBSS) were subjected to simultaneous rosetting with a mixture of EAC and E reagents. After an overnight incubation at 4°C, cells were gently resuspended and subjected to density gradient centrifugation with Ficoll-Hypaque. Cells remaining at the interface contained L cells (>80% pure). To isolate T cells, macrophage-depleted PBMC in HBSS were subjected to overnight rosetting with the E reagent. After an overnight incubation at 4°C, cells were gently resuspended and subjected to a slow density gradient centrifugation (200 g for 15 min) so that only strongly rosetted cells settled in the pellet. The pellet was then lysed with ammonium chloride to obtain T cells (>95% reform E rosettes). To obtain macrophages, nonadherent cells were removed from plastic dishes by vigorous washing, and then the adherent cells were gently scraped off with a rubber policeman. With this technique, macrophage purity was >85%. Viability of all cell subpopulations was >95% by trypan blue exclusion techniques.

Further purification of L cell subpopulation. L cells as isolated were contaminated with T lymphocytes (3–5% E rosettes) and macrophages (3–6%) but rarely with B lymphocytes (<1%). Removal of contaminating T cells from the L cell subpopulation was achieved by complement-dependent lysis of T cells. An IgG mouse anti-T cell mononclonal antibody (Hybritech Incorporated) and rabbit serum (complement) was used in the cytotoxicity procedure.

Characterization of L cells with monoclonal antibodies. In these experiments, enriched L cell subpopulations were pretreated with the relevant monoclonal antibody, washed twice, stained with FITC-labeled horse anti-mouse IgG (Hybritech Incorporated), and then subjected to EA rosette formation at 4°C. These studies were performed in the presence of 0.02% sodium azide. The percentage of EA rosetted cells (L cells) containing an FITC-labeled lymphocyte was then determined. For these determinations, freshly prepared wet mounts with cover slips compressed tightly were examined to optimize visualization of the centrally located lymphocyte. Monoclonal antibodies used had the following characteristics and specificities: (a) Tm specific for all peripheral blood T lymphocytes (Hybritech Incorporated), (b) anti-HLA-DR, nonpolymorphic determinants (clone L243, IgG2a, Becton, Dickinson & Co., Div. Falcon Labware, Rutherford, N. J.) (c) antimonocyte specific for monocytes but not lymphocytes or HLA-DR antigens (clone 653D, IgGl-k, Bethesda Research Lab, Rockville, Md.), (d) anti-monocyte specific for monocytes and a lymphocyte subpopulation (9, 24) (OKM1, Ortho Pharmaceutical Corporation, Raritan, N. J.).

Pokeweed mitogen (PWM)-induced production of intracytoplasmic Ig. In this assay, freshly prepared cells in RPMI containing 20% autologous human sera were incubated with PWM (Grand Island Biological Co., lot C477101) to achieve a final concentration of 1:100 of the stock solution of mitogen. PWM-treated cells were cultured for 8 d (5% CO2, 37°C) in Falcon plastic tubes (Falcon Labware) and production of intracytoplasmic Ig was determined by making cytospin centrifugation preparations of cells as described (12) and staining these preparations with goat antiserum to human Ig (polyvalent, Hyland Diagnostics Div.). Between 1,000 and 2,000 cells were counted to determine the percentage of cells with intracytoplasmic Ig.

Pretreatment of L cells with EA complexes or concanavalin A (Con A). Freshly isolated L cells (3 × 10^9) or macrophages (3 × 10^6) in 0.2 ml RPMI with 10% fetal calf serum were incubated with 0.025 ml of a 2% solution of the EA reagent or human O+ erythrocytes (control). After 1 h incubation at 37°C in 5% CO2, the erythrocytes in the cell mixture were lysed with ammonium chloride and washed three times with RPMI before use in co-culture experiments. In these experiments, human erythrocytes used to prepare EA reagent were depleted of PBMC by Ficoll-Hypaque so as to prevent an “allogetic” effect.

Isolated lymphocyte subpopulations were pretreated with Con A as described (12). Briefly, 1 × 10^6 cells/ml were cultured in the presence of 32 μg/ml Con A (grade III, Sigma Chemical Co., St. Louis, Mo.). After 48 h, cultured cells were washed twice, then added to the appropriate responder cells.

Basic experimental design. 2 × 10^6 freshly isolated PBMC (nonmacrophage depleted) in 0.25 ml RPMI supplemented with 20% autologous sera were cultured alone (control) or co-cultured with 2 × 10^6 cells of an enriched subpopulation. Culture tubes were then exposed to PWM and allowed to proliferate in 5% CO2 at 37°C for 8 d before determining intracytoplasmic Ig. In certain experiments, isolated subpopulations were either radiated (3,000 rad) or activated with EA-immune complexes before co-culturing with PBMC. At the end of 8 d, cell cultures were counted for approximate yield and for the percentage of cells with intracytoplasmic Ig. Cell viability at the end of 8-d culture was >90%. Extent of enhancement or suppression of Ig synthesis in co-cultures
was determined by calculating the total number of intra-
cytoplasmic Ig-bearing cells for cell yields at the end of
culture and then using these values in the following
equation:

\[
\frac{(\text{PBMC + subpopulation co-culture})}{(\text{PBMC alone}) + (\text{subpopulation alone})}
\]

RESULTS

Characterization of L cells with monoclonal antibo-
dies. In these experiments, enriched L cell sub-
populations were pretreated with the relevant mono-
clonal antibodies (specific for either HLA-DR antigens,
T cell, or monocyte antigen membrane determinants),
stained with FITC horse anti-mouse IgG, and then
subjected to EA rosette formation. The percentage of
EA-rosetted cells (L cells) labeled with FITC was then
determined. Data are depicted in Table I. L cells (EA
rosette positive) from the nine subjects, whose cells
were later used for immunoregulatory studies, rarely
possessed T cell antigens (T10, Hybritech Incorporated),
DR antigens (Becton, Dickinson & Co.) and monocyte-specific antigen (BRL). However, a majority
of L cells possessed the OKMI monocyte antigen
(Ortho Pharmaceutical Corporation) that has been
shown to be shared with T, cells (9, 24). Because of
the latter observation, enriched L cell subpopulations
from four subjects were kept in culture in RPMI
containing either 20% fetal calf serum or human serum—a technique used by other investigators to
check for promonocytes (22). Examination of cultures
at varying intervals for up to 10 d did not reveal
macrophages as determined by euchrysine staining, esterase staining, and latex bead ingestion.

The lack of stained EA-rosetted cells was not due to
the monoclonal antibody complex on stained cells
inhibiting rosette formation because the total per-
centage of EA rosettes using FITC-stained cells was
identical to control cells not pretreated with mono-
clonal antibody. This is particularly relevant for the
HLA-DR antigen as several investigators have dem-
onstrated that antibodies to such antigens inhibit binding of complexes to Fc receptors on B lymphocytes (13).
However, our studies and those of others (13) indicate
that antibodies to HLA-DR antigens do not inhibit
binding of EA to Fc receptors on L cells. This may
ever be explained on the basis that L cells lack
HLA-DR antigens (14–16).

Enhancing effect of L cells on PWM-induced differ-
tentiation of B cells. Optimal differentiation of
human B cells into plasmacytid cells with PWM
stimulation requires T cells and macrophages (4, 10,
17). Hence, to investigate the immunoregulatory role
of L cells in this model system, highly purified L cells
were co-cultured with PBMC in the presence of PWM.
In 14 normal adults studied, L cells consistently aug-
mented both PBMC proliferation (as determined by
cell yields) and B cell differentiation into plasma-
cytoid cells. Representative experiments are exempli-
ied in Table II and Fig. 1. Optimal augmentation was
observed when the ratio of L cells to PBMC was 1:1
(Fig. 1). In L cells containing co-cultures, cell yields
increased (enhancement ratios varied from 1.4:1 to 2:1),
while differentiation into plasmacytid cells increased
by a mean of 89%±62 SD.

In contrast, an E rosette-purified T cell subpopula-
tion either enhanced or suppressed B cell differenti-
ation when co-cultured with PBMC at a ratio of 1:1
(Table II). This variable response with the T cells was,
however, abolished when the T cell subpopulation was
irradiated before co-culturing with PBMC. Radiated T
cells, when co-cultured at a ratio of 1:1 consistently
led to enhancement of Ig synthesis, thus confirming
previous observations demonstrating that radiation
inactivates a subset of suppressor T cells (11). Under
the culture conditions used, the degree of enhance-
ment of B cell differentiation by radiated T cells was
similar to that obtained with L cells (Table II). How-
ever, unlike T helpers, which are radioresistant,
L cell enhancement was always abolished (eight ex-
periments) with L cell irradiation.

Enhancement of Ig synthesis by L cells was not class
specific. In nine subjects studied, L cells enhanced

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterization of L Cells Using Monoclonal Antibodies in Double-marker Studies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subjects</th>
<th>*T cell antibody (T<sub>10</sub>)</th>
<th>HLA-DR antibody</th>
<th>Monocyte antibody (BRL)</th>
<th>Monocyte antibody (OKMI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.L.</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>G.P.</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>O.G.</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>J.G.</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>83</td>
</tr>
<tr>
<td>H.M.</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>C.S.</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>68</td>
</tr>
<tr>
<td>M.M.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>R.A.</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>J.S.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>81</td>
</tr>
</tbody>
</table>

Enriched L cell subpopulations not further depleted of con-
taminating T cells with monoclonal antibody were pretreated
with the relevant monoclonal antibodies, stained with FITC-
conjugated horse anti-mouse IgG, and then subjected to
EA-rosette formation at 4°C. The percentage of EA rosettes
that had FITC-staining lymphocytes was then determined
after carefully examining 100 rosetted cells.

* Characteristics of various monoclonal antibodies are de-
tailed in Methods.

† OKMI monocyte Antibody is reactive with monocytes,
granulocytes; and T lymphocytes (9, 24).
both IgM and IgG synthesis, although in two of the nine subjects, there was preferential enhancement of a particular Ig class (Table III).

Effect of pretreatment of L cells with EA complexes. An important characteristic of all L cells is the presence of high density, high avidity Fc IgG receptors (6, 18, 19). It therefore became important to modulate these receptors with immune complexes and determine whether L cell function was affected. Techniques similar to those of Moretta et al. (4) to study the function of Fc IgG receptors on T cells was used. Hence, L cells were initially subjected to rosetting with either O+ human erythrocytes (control) or EA complexes, and then treated with ammonium chloride to lyse the erythrocytes and free the L cells. Addition of such L cells (i.e., pretreated with EA complexes) to PBMC culture led to marked suppression of B cell differentiation in 13 of the 14 subjects studied. Data on seven subjects is depicted in Table II. Significant inhibition (>50%) was noted even when the ratio of L cells to PBMC was 0.1:1. The observed suppression in B cell differentiation was associated with enhancement in proliferation as determined by cell recovery at the end of the culture. Cell yield enhancement ratios varied from 1.2:1 to 1.8:1. After irradiation, L cells pretreated with EA complexes were neither inhibitory nor enhancing.

Because there was some macrophage contamination (2–6%) in the L cell subpopulation, it became important to determine whether the observed inhibition with the EA complexes was due to activation of suppressor macrophages as described (20, 21). Hence, highly purified macrophages (an adherent population scraped off plastic dishes) were subjected in a similar fashion to EA complexes and then added to PBMC. As exemplified in Table IV, addition of EA-pretreated macrophages to PBMC did not lead to increased suppression of B cell differentiation. In these experiments, 2×10^8 macrophages were co-cultured with 2×10^8 PBMC as macrophage contamination in the L cell subpopulation was always <10%. Of note, adherent macrophages (nonpretreated with immune complexes) in certain individuals suppressed B cell dif-

<table>
<thead>
<tr>
<th>Cells cultured</th>
<th>P.L.</th>
<th>G.F.</th>
<th>L.B.</th>
<th>O.G.</th>
<th>J.G.</th>
<th>H.M.</th>
<th>C.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBMC alone</td>
<td>220</td>
<td>70</td>
<td>62</td>
<td>45</td>
<td>6</td>
<td>42</td>
<td>6</td>
</tr>
<tr>
<td>L alone</td>
<td>10</td>
<td>3</td>
<td>12</td>
<td>17</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>PBMC + L</td>
<td>200 (1.14)</td>
<td>110 (2.0)</td>
<td>83 (1.55)</td>
<td>72 (1.69)</td>
<td>31 (4.5)</td>
<td>60 (1.76)</td>
<td>15 (2.93)</td>
</tr>
<tr>
<td>PBMC + LEA</td>
<td>57 (0.32)</td>
<td>8 (0.14)</td>
<td>90 (1.68)</td>
<td>8 (0.19)</td>
<td>4 (0.38)</td>
<td>5 (0.15)</td>
<td>2 (0.39)</td>
</tr>
<tr>
<td>PBMC + T</td>
<td>52 (0.39)</td>
<td>68 (1.62)</td>
<td>56 (1.39)</td>
<td>ND</td>
<td>43 (8.3)</td>
<td>76 (2.99)</td>
<td>0.5 (0.13)</td>
</tr>
<tr>
<td>PBMC + TRad</td>
<td>240</td>
<td>106</td>
<td>97</td>
<td>ND</td>
<td>42</td>
<td>83</td>
<td>22</td>
</tr>
</tbody>
</table>

2×10^8 PBMC were co-cultured with equal numbers of autologous L or T cells in the presence of PWM. Cultures were harvested at 8 d and checked for intracytoplasmic Ig and total cell yields. L cell subpopulations were purified by a cytotoxicity assay to remove T cells. LEA are L cells pretreated with EA complexes. In all subjects, LEA, when cultured alone, had <10 plasmacytoid cells per 1,000 cultured cells recovered. Values of co-cultures containing L cells pretreated with O+ human cells (control) were very similar to that of co-cultures with untreated L cells. TRad are T cells irradiated with 3,000 rad. Cell yields for irradiated T cells when cultured alone was <20%. Figures in parentheses are ratios to determine extent of enhancement or suppression of Ig synthesis. This is determined from total yields as described in Methods.

![Graph](image-url)

Figure 1 Varying number of L cells were co-cultured with 2×10^8 PBMC in the presence of PWM. Cell yields at the end of 8 d are depicted on this figure. Cell yields of L cells when cultured alone decreased and varied between 70 and 85% of the starting number of cells. Subjects: P.L., O; J.G., ●.
Irradiated T cells maintained their augmenting effect despite Con A in the precultures.

DISCUSSION

Using the recently developed monoclonal antibodies, it is now evident that the L cell subpopulation is a homogenous subpopulation distinct from B or T cells, or even macrophages. L cells possess high density Fc IgG receptors but lack C3 receptors, intrinsic membrane Ig, T cell-specific antigen, and do not develop into macrophages. Perhaps the previous confusion in the literature with regard to membrane markers present on L cells (reviewed 8) may be explained on the basis of utilization of nonspecific markers and the use of heteroantisera. The latter may explain the high incidence (40–50%) of DR-positive antigen previously noted on noncultured L cells (8). Our data and those of others indicate that the majority (>90%) of noncultured L cells lack the DR antigen (14–16).

These data demonstrate that L cells, like T cells and macrophages, also possess immunoregulatory properties. Although it is highly unlikely that B cell differentiation into plasma cells is L cell dependent as has been demonstrated with T cells, our data provide evidence that L cells can exert both positive or negative influences on terminal B cell differentiation, depending on the state of activation of their Fc IgG receptors. That a potentially single subset of cells can exert both positive and negative influences on the immune system has not been described before. Previous studies have clearly demonstrated, at least with regard to T cells, that different T cell subsets are involved

TABLE III

Effect on Ig Subclasses of Co-culturing L or T Cells with Autologous PBMC Subjected to PWM Stimulation

<table>
<thead>
<tr>
<th>Cells co-cultured</th>
<th>Subject J.G.</th>
<th>Subject G.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poly</td>
<td>IgM</td>
</tr>
<tr>
<td>PBMC</td>
<td>57</td>
<td>19</td>
</tr>
<tr>
<td>PBMC + L</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>PBMC + T_rad</td>
<td>183</td>
<td>73</td>
</tr>
</tbody>
</table>

Details of experiments as in Table II.

TABLE IV

Effect on Ig Synthesis of Co-culturing Immune-Complex-pretreated Macrophages with Autologous PBMC

<table>
<thead>
<tr>
<th>Cells co-cultured</th>
<th>P.L.</th>
<th>G.P.</th>
<th>J.G.</th>
<th>H.M.</th>
<th>P.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBMC</td>
<td>110</td>
<td>30</td>
<td>122</td>
<td>42</td>
<td>100</td>
</tr>
<tr>
<td>PBMC + 10% Macs</td>
<td>80</td>
<td>30</td>
<td>53</td>
<td>47</td>
<td>170</td>
</tr>
<tr>
<td>PBMC + 10% MacsEA</td>
<td>76</td>
<td>72</td>
<td>60</td>
<td>51</td>
<td>182</td>
</tr>
<tr>
<td>PBMC + EAlyxed</td>
<td>110</td>
<td>ND*</td>
<td>118</td>
<td>ND*</td>
<td>ND*</td>
</tr>
</tbody>
</table>

Cells adherent to plastic dishes despite vigorous washing served as a source of macrophages. 80–86% of such cells ingested latex particles and also contained lysozymes that stained red with eucryhine. Pretreatment of macrophages with EA and design of co-culture experiments as described in legend of Table II. 2 × 10⁴ PBMC were co-cultured with 2 × 10⁴ macrophages. Cells recovered at the end of 8 d originated from the PBMC population as macrophages die after 2 d. No significant difference in cell yields was observed with the various cell mixtures.

* Not done.

TABLE V

Effect on B Cell Differentiation of Pretreatment of L Cells and T Cells with Culture Media Alone or Con A before Co-culture Experiments

<table>
<thead>
<tr>
<th>Cells co-cultured</th>
<th>Pretreatment of subpopulation</th>
<th>G.S.</th>
<th>M.M.</th>
<th>P.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBMC alone</td>
<td></td>
<td>102</td>
<td>110</td>
<td>50</td>
</tr>
<tr>
<td>PBMC + L</td>
<td>Media</td>
<td>26</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>PBMC + L</td>
<td>Con A</td>
<td>38</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>PBMC + T</td>
<td>Media</td>
<td>14</td>
<td>91</td>
<td>38</td>
</tr>
<tr>
<td>PBMC + T</td>
<td>Con A</td>
<td>11</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>PBMC + Rad T</td>
<td>Media</td>
<td>302</td>
<td>94</td>
<td>140</td>
</tr>
<tr>
<td>PBMC + Rad T</td>
<td>Con A</td>
<td>311</td>
<td>111</td>
<td>170</td>
</tr>
</tbody>
</table>

Subpopulations were precultured with or without Con A in RPMI with 20% autologous serum for 48 h, washed twice and then added to co-cultures. 2 × 10⁴ PBMC were co-cultured with 2 × 10⁴ subpopulations.

* Immune-Regulatory Role of L Lymphocytes*

435
with enhancement or suppression of Ig synthesis (1, 4, 11, 21). Evidence suggesting that a single subset of L cells is responsible for both enhancement and suppression was derived from the following observations. Firstly, all L cells have Fc IgG receptors, and when added to PBMC are always stimulatory, unlike that observed with T cells. Depending on the ratio of T suppressors to T helpers, a T cell subpopulation could either exert a positive or negative signal on B cell differentiation as was observed by others and also in our experiments (Table II) (11, 21). Secondly, after Fc IgG activation with immune complexes, only suppression was observed. Thirdly, irradiated L cells lost both enhancing and suppressor properties, unlike that observed with T cells (11). Finally, the L cell subpopulation appears to be homogenous with regard to the presence or absence of membrane receptors or determinants.

The augmenting (or inhibitory) effect of L cells on B cell differentiation cannot be explained on the basis of contaminating T cells. T cells were removed from the L cells in a cytotoxicity assay using a T cell-specific monoclonal antibody. Additionally, unlike T helper cells, the L cells enhancing effect was radiosensitive, even when used in co-culture at ratios >1:1.

Although L cells have been shown to possess a marker that is present on T, cells and monocytes (OKM1), there is compelling evidence to indicate that these cells are not promonocytes or monocytes (9, 22, 23). L cells lack the intracytoplasmic enzymes present in monocytes, do not ingest latex particles, and in culture do not develop into macrophages (7–9). Secondly, unlike L cells, nonimmune complex-pretreated macrophages, when added to PBMC, either augmented or inhibited B cell differentiation (Table IV). Others have made similar observations and have further demonstrated that macrophage-induced suppression is radioresistant (20, 21). Finally, pretreatment of macrophages with EA complexes did not lead to increased suppression of B cell differentiation (Table IV). Presence of monocyte antigen on L cells could indicate that L cells share a similar myeloid lineage with monocytes or that L cells are precursors of promonocytes and require more fastidious in vitro culture techniques to make them develop into macrophages.

More recent studies indicate that the majority of T, cells are indeed non-T cells as they lack T cell-specific antigens detected by monoclonal antibodies (9, 24). Could T, cells, therefore, be L cells that form E rosettes? Firstly, both cells are morphologically similar (25). Secondly, T, cells, like L cells, possess the marker that is present on myeloid precursors (9, 24), and in addition, develop into suppressors of B lymphocyte differentiation only after immune-complex activation (4). However, it is unclear whether T, when nonactivated by immune complexes, actually augment B cell differentiation as observed with L cells. Hayward and Lydyard (26) provide preliminary data indicating that human newborn T, cells, when non-activated by immune complexes, can enhance B cell differentiation into plasma cells. However, more data is required to substantiate whether T, cells belong to the L cell lineage.

Suppression induced by immune-complex activation of L cells and T, cells is distinct from the spontaneous suppression observed with another T cell subset (21, 26–28). This latter T cell subset possesses surface antigens detected by the OKT5 monoclonal antibody (29) and rather surprisingly, also has Fc IgM receptors (9, 24). Additionally, suppression of B cell differentiation induced by T cells in the absence of complexes is also associated with marked suppression of proliferation (28). Our data and that of others clearly indicate that L cells and T, cells lead to enhancement of proliferation even after immune-complex activation of these cells (4, 30).

A surprising observation was the loss of helper and development of suppressor activity by L cells but not helper T cells after in vitro incubation and in the absence of mitogenic stimulation. This observation is in keeping with that of others (31) who also demonstrated that human nylon nonadherent lymphoid cells (which are invariably enriched for L and T cells) (5, 7) develop suppressor activity after in vitro incubation. Suppression of the in vitro PWM-induced B cell differentiation is, however, greater with co-cultures containing Con A-pretreated PBMC than with PBMC subjected only to in vitro incubation (12). It therefore seems reasonable to assume that the augmented suppression observed with Con A pretreatment of PBMC is due to activation of a subset of cells distinct from L cells or the radioresistant T helper cells. Perhaps Con A activates suppressor cells within the T, subset, which do not depend on immune complexes to activate their suppressive potential. Hayward et al. (32) have data to demonstrate that this may indeed be the case. However, more studies are needed to define whether synergism is required between various subsets for the induction of suppressors after mitogenic stimulation.

The concept of a potentially single subset of cells exerting both a positive and negative influence on terminal B cell differentiation is an intriguing possibility. However, these in vitro observations cannot be easily reconciled with our current understanding of the immune regulation of B cell differentiation. It may well be that those subsets of cells that can spontaneously augment or suppress the immune response possess antigenic specificity and are directly under genetic control and, hence, are important in the primary response to an antigenic stimulation. Immune regulation of B cell differentiation mediated by L cells and perhaps T, cells may lack genetic control, but be
dependent on IgG immune complexes. L cells may therefore operate in the feed-back control of the secondary immune response. Such a hypothesis may help explain the presence of T suppressors in the Tα subset of cells because control of the initial antibody response, which is mainly IgM, may require antigen specificity. This may also explain the absence of HLA-DR antigens on L cells, as such antigens may not be essential for the secondary immune response.

Deficiency of L cells has been described in active sarcoidosis (33). In this disease hypergammaglobulinemia is commonly present (34), despite the presence of excessive macrophages that inhibit B cell differentiation (35). Deficiency of L cells may explain this hypergammaglobulinemia as perhaps such patients lack the nonspecific feed-back regulation of terminal B cell differentiation; hence, the need for increased suppressor macrophages in this disease.

ACKNOWLEDGMENTS
I wish to thank Clinton E. Spencer and Janet V. Gorman for their expert technical assistance and Debbie Bush for her excellent secretarial assistance.

This study was supported by the Pratt Fund, grant 6-44650; National Institutes of Health grant 5-23482; local Renal Unit Fund, and the Sierck Fund, 6-41090.

REFERENCES

