Isolated adipocytes and soleus muscles prepared from mature rats, rendered hypothyroid by a low iodine diet and propylthiouracil, markedly resisted the ability of insulin to increase glucose utilization. In adipocytes, the sum of basal d-(1-14C)-glucose conversion to CO2, glyceride-glycerol, and fatty acid was unaltered by hypothyroidism, although conversion to fatty acid was decreased. The response of each of these metabolic pathways to insulin at all concentrations tested was greatly diminished in hypothyroid rat adipocytes. 3-O-Methylglucose transport rates in the presence of insulin were not significantly different in adipocytes from hypothyroid as compared with euthyroid rats, although basal transport rates were significantly higher in the hypothyroid state. Lipolysis and cyclic AMP accumulation in adipocytes from hypothyroid rats in response to theophylline were markedly diminished compared with euthyroid controls, but insulin was about as effective in inhibiting lipolysis in these cells as in those derived from euthyroid animals. The binding of 125I-insulin to adipocytes at several hormone concentrations was also shown to be unaffected by hypothyroidism.
Michael P. Czech, Craig C. Malbon, Keith Kerman, Wendy Gitomer, Paul F. Pilch
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 161 | 0 |
86 | 19 | |
Scanned page | 311 | 7 |
Citation downloads | 42 | 0 |
Totals | 600 | 26 |
Total Views | 626 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.