Abstract

Propionic and methylmalonic acidemia are both known to be associated with hyperammonemia. Rats injected with 10 or 20 mmol/kg of propionate or 20 mmol/kg of methylmalonate, along with 1.5 g/kg of a mixture of amino acids, developed severe hyperammonemia, whereas rats administered the same dosages of acetate did not. In vitro, neither propionyl nor methylmalonyl CoA affected the activity of carbamyl phosphate synthetase I, ornithine transcarbamylase, nor the activation constant (KA) of carbamyl phosphate synthetase I for N-acetyl glutamate. Furthermore, rats injected with propionate showed no alteration of liver amino acid concentrations, which could explain impaired ureagenesis. Animals injected with methylmalonate showed an increase in both citrulline and aspartate, suggesting that argininosuccinic acid synthetase may also have been inhibited. Liver ATP levels were unchanged. Citrullinogenesis, measured in intact mitochondria from livers of injected animals, was reduced 20-25% by 20 mmol/kg of propionate or methylmalonate (compared with acetate). This effect was attributable to an impairment in the normal rise of liver N-acetyl glutamate content after amino acid injection. Thus, carbamyl phosphate synthetase I activation was reduced. Liver levels of acetyl CoA and free CoA were reduced. Levels of unidentified acyl CoA derivatives rose, presumably reflecting the accumulation of propionyl and methylmalonyl CoA. Thus, the principal mechanism for hyperammonemia induced by these acids is depletion of liver N-acetyl glutamate, which is in turn attributable to depletion of acetyl CoA and/or competitive inhibition by propionyl and methylmalonyl CoA of N-acetyl glutamate synthetase. Injection of methylmalonate may also have an additional inhibitory effect on argininosuccinic acid synthetase.

Authors

Peter M. Stewart, Mackenzie Walser

×

Other pages: