Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Rapid Publication Free access | 10.1172/JCI109700

Vitamin K-dependent Calcium Binding Proteins in Aortic Valve Calcification

Robert J. Levy, John A. Zenker, and Jane B. Lian

Department of Cardiology, The Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Orthopaedic Surgery, The Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Levy, R. in: JCI | PubMed | Google Scholar

Department of Cardiology, The Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Orthopaedic Surgery, The Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Zenker, J. in: JCI | PubMed | Google Scholar

Department of Cardiology, The Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Orthopaedic Surgery, The Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Lian, J. in: JCI | PubMed | Google Scholar

Published February 1, 1980 - More info

Published in Volume 65, Issue 2 on February 1, 1980
J Clin Invest. 1980;65(2):563–566. https://doi.org/10.1172/JCI109700.
© 1980 The American Society for Clinical Investigation
Published February 1, 1980 - Version history
View PDF
Abstract

The pathogenesis of valvar calcification, which complicates the course of cardiac valve disease and also affects tissue valve prostheses, is incompletely understood. The present work explores the possible role of the vitamin K-dependent, calcium-binding amino acid, γ-carboxyglutamic acid (Gla) in valve mineralization. Gla is normally found in the vitamin K-dependent clotting factor proteins, and is also present in unique calcium binding proteins in bone, kidney, and lung. Unique Gla-containing proteins have also been isolated from pathologic calcifications including calcium containing renal stones and calcified atherosclerotic plaque. Calcified valves including specimens with calcific aortic stenosis, calcified porcine xenograft valves, and a calcified aortic homograft valve were analyzed for Gla content, complete amino acid analysis, and tissue calcium and phosphorus levels. Normal porcine valves contained protein-bound Gla (2.0-10.6 Gla/104 amino acids): no Gla was present in normal valve leaflets. Furthermore, Gla levels paralleled tissue calcium content in the calcified valves. In addition, complete amino acid analysis indicated a decline in valvar collagen content plus increased acidic proteins in conjunction with valvar calcification and the presence of Gla-containing proteins. These results suggest that calcific valvar disease may result in part from vitamin K-dependent processes.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 563
page 563
icon of scanned page 564
page 564
icon of scanned page 565
page 565
icon of scanned page 566
page 566
Version history
  • Version 1 (February 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts