Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109210

Interaction of Platelet Membrane Receptors with von Willebrand Factor, Ristocetin, and the Fc Region of Immunoglobulin G

Anne Moore, Gordon D. Ross, and Ralph L. Nachman

Division of Hematology-Oncology, Department of Medicine, The New York Hospital-Cornell Medical Center, New York 10021

Find articles by Moore, A. in: JCI | PubMed | Google Scholar

Division of Hematology-Oncology, Department of Medicine, The New York Hospital-Cornell Medical Center, New York 10021

Find articles by Ross, G. in: JCI | PubMed | Google Scholar

Division of Hematology-Oncology, Department of Medicine, The New York Hospital-Cornell Medical Center, New York 10021

Find articles by Nachman, R. in: JCI | PubMed | Google Scholar

Published November 1, 1978 - More info

Published in Volume 62, Issue 5 on November 1, 1978
J Clin Invest. 1978;62(5):1053–1060. https://doi.org/10.1172/JCI109210.
© 1978 The American Society for Clinical Investigation
Published November 1, 1978 - Version history
View PDF
Abstract

The agglutination of human platelets by ristocetin and von Willebrand factor was inhibited by aggregated immunoglobulin (Ig)G and by Fc fragments of IgG, but not by Fab, F(ab′)2 or pFc fragments of IgG. Because this inhibition occurred with formalin-fixed platelets as well as with normal platelets, a generalized aggregation of fluid membrane components by Fc fragments was not responsible for this inhibition of ristocetin and von Willebrand factor-induced agglutination. Reciprocal inhibition of platelet Fc receptors was produced by prior incubation of platelets with von Willebrand factor and ristocetin. Sucrose density gradient ultracentrifugation studies demonstrated that aggregated IgG did not form fluid-phase complexes with von Willebrand factor and ristocetin. Furthermore, passage of von Willebrand factor and ristocetin through a column of immobilized heat-aggregated IgG did not alter platelet agglutinating activity which indicates that aggregated IgG did not inactivate von Willebrand factor or ristocetin. Thus, it was likely that the IgG-mediated interference with platelet agglutination by ristocetin and von Willebrand factor did not occur in the fluid phase but at the platelet surface. These studies suggest that the platelet membrane Fc receptor may be either a part of, or sterically related to, the membrane glycoprotein I complex that interacts with von Willebrand factor, and that occupation of one of these surface components blocks the availability of the other.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1053
page 1053
icon of scanned page 1054
page 1054
icon of scanned page 1055
page 1055
icon of scanned page 1056
page 1056
icon of scanned page 1057
page 1057
icon of scanned page 1058
page 1058
icon of scanned page 1059
page 1059
icon of scanned page 1060
page 1060
Version history
  • Version 1 (November 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts