The Role of Phosphate in the Action of Vitamin D on the Intestine

STANLEY J. BIRGE and RUTH MILLER, Department of Medicine, Division of Endocrinology and Metabolism, Washington University School of Medicine, The Jewish Hospital of St. Louis, St. Louis, Missouri 63110

ABSTRACT The response of chick intestine to vitamin D and its metabolites was studied in an organ culture preparation of chick ileum explants. Both 25hydroxycholecalciferol (25-OHD₃) at a concentration of 20 ng/ml or greater and 1,25-dihydroxycholecalciferol [1,25-(OH)₂D₃] at a concentration of 50 pg/ml or greater stimulated the rate of accumulation of [32P]phosphate and ⁴⁵Ca by the explants and the incorporation of [³H]thymidine into DNA. The accumulation of [³²P]phosphate by the explants was against a concentration gradient and inhibited by ouabain and dinitrophenol. Two saturable mechanisms appeared to mediate the cellular accumulation of phosphate with K_a of 0.0047 and 0.125 mM, respectively. The V_{max} of the lower affinity transport mechanism was accelerated by 1,25-(OH)₂D₃. Actinomycin D (5.0 μ g/ml) did not block the intestinal response to 1,25-(OH)₂D₃ stimulation of both [³²p]phosphate and ⁴⁵Ca accumulation. Significant stimulation of [³²P]phosphate accumulation was observed 30 min after the addition of 1,25-(OH)₂D₃, preceding the sterol-induced increase in the rate of ⁴⁵Ca uptake by 30 min and the sterol-induced increase in [3H]thymidine incorporation into DNA by 150 min. Increasing extracellular phosphate concentration to 3.0 mM increased [³H]thymidine incorporation into DNA and the rate of ⁴⁵Ca uptake by the explants. Reducing extracellular phosphate concentration to 0.05 mM attenuated the response of the explants to 1,25-(OH)- $_{2}D_{3}$. From these observations it is postulated that the primary action of vitamin D sterols in the intestine is to enhance the ability of the mucosal cell to accumulate phosphate. The data suggest that restoration of intracellular phosphate levels may then permit expression of the cells' response to vitamin D sterols.

INTRODUCTION

Hypophosphatemia is a prominent feature of the vitamin D deficiency and vitamin D-resistant states. Recent investigations have led to the recognition that the restoration of phosphate homeostasis in the rachitic animal is the consequence of the direct action of vitamin D on a variety of tissues. These investigations have demonstrated that vitamin D stimulates the absorption of phosphate by the intestine (1-6), the mobilization of phosphate from bone (7) and from possibly other tissue stores (8), and enhances the reabsorption of phosphate by the renal tubule (8-11). Synthesis of the active metabolite of vitamin D, 1,25dihydroxycholecalciferol [1,25-(OH)₂D₃]¹ is under the direct control of the plasma phosphate concentration (12, 13). Thus, a feedback control mechanism exists for the regulation of plasma phosphate levels by vitamin D. From these observations it is apparent that vitamin D is an important determinant of phosphate balance by influencing phosphate transport at multiple tissue sites.

Another aspect of vitamin D action is the maintenance of normal growth. Growth retardation, characteristic of vitamin D deficiency, has been attributed to the deficiency of bone mineral. Indeed, the restoration of blood Ca and phosphorus levels through appropriate dietary supplements significantly reverses this growth retardation but never to the same extent as that achieved by the repletion of the rachitic animal with vitamin D (14). The identification in essentially all tissues of a cytoplasmic protein which specifically binds 25-hydroxycholecalciferol (25-OHD₃) with high affinity (15, 16) suggests that vitamin D may influence cellular metabolism at a nonspecific or basic level which could result in increased tissue growth. In fact, 25-OHD₃ has been shown to act directly on skeletal muscle in vitro to accelerate the accumulation of phos-

This work was presented, in part, at the Annual Meeting of The Central Society, Chicago, Ill., November, 1976.

Dr. Birge is a recipient of a National Institutes of Health Career Development Award.

Received for publication 9 February 1977 and in revised form 3 June 1977.

¹Abbreviations used in this paper: 25-OHD₃,25-hydroxycholecalciferol; 1,25-(OH)₂D₃, 1,25-dihydroxycholecalciferol.

phate and to subsequently stimulate the rate of protein synthesis (17). A direct influence of vitamin D on intestinal mucosal cell proliferation has also been suggested by the acceleration of DNA synthesis in intestinal epithelium which precedes significant alterations in systemic calcium and phosphorus concentrations (18).

It was the purpose of these investigations to examine the influence of vitamin D on mucosal cell proliferation and to examine the role of phosphate in the expression of the intestinal response to the vitamin. To this end, an organ culture preparation of vitamin Ddeficient chick ileum was developed which permitted control of the extracellular ionic environment. These investigations suggest that the response of the intestinal mucosa to $1,25-(OH)_2D_3$ and $25-OHD_3$ is dependent upon the restoration of intracellular phosphate concentrations resulting from the direct action of these sterols on the mucosal cell phosphate transport.

METHODS

Preparation of chick intestine organ culture. 1-day-old white leghorn chicks (Ken Roy, Berger, Mo.) were maintained on a vitamin D-deficient rachitogenic diet (Teklad Test Diets, Life Sci. Div., The Mogul Corp., Madison, Wis.) for 4 wk before the removal of the intestinal segment demarcated distally by the attachment of the glands of Cowper and proximately by the yolk sac remnant. The explants were made with a 2-mm skin punch biopsy, and six explants equivalent to approximately 1 mg protein were placed mucosal side up on glass fiber filter. The filters were supported in a Falcon organ culture dish (Falcon Plastics, Div. of BioQuest, Oxnard, Calif.) containing 1.4 ml of medium and incubated at 37°C in an atmosphere of 95% O2 and 5% CO2. The incubation medium consisted of an Earle's buffered saline containing a final concentration of 1.4 mM Ca, 2.0 cm³/dl of 50 × minimal essential medium amino acid mixture, 10,000 U/dl of insulin, 30 mg/dl of glutamine, 10,000 U/dl penicillin, 10 mg/dl of steptomycin, and 2.5 cm³/dl of serum from vitamin D-deficient chicks. The vitamin D sterols were solubilized in the vitamin-deficient chick serum before their addition to the cultures. Crystalline 25-OHD₃ was kindly supplied by Dr. John Babcock of the Upjohn Co., Kalamazoo, Mich. The sterol was dissolved in absolute ethanol and final dilutions were aliquoted on the basis of the molar extinction coefficient. Both 25-OHD₃ and [³H-26,27]25-OHD₃ (Amersham/Searle Corp., Arlington Heights, Ill.; specific radioactivity of 1.1 Ci/mmol) were purified on 1×55 -cm columns of Sephadex LH-20 (Pharmacia Fine Chemicals, Inc. Piscataway, N. J.) slurried in chloroform-n-hexane (65:35 vol/vol) before use. The 1,25(OH)2D3 was synthesized from the incubation of 25-OHD₃ of known specific radioactivity with rachitic chick kidney homogenates as described by Boyle et al (19). The product was extracted and purified by silicic acid and Sephadex LH-20 chromatography. Phosphate salts were added to the incubation medium from a neutral stock solution to give the appropriate phosphate concentration. To achieve phosphate concentrations of less than 0.05 mM in the medium, serum dialyzed against phosphate-free buffer was used. Data from a single experiment represent the averages of six dishes of 36 explants per group. In a single experiment, four to six groups could be conveniently studied. Since the explants were derived from a single pool for a given experiment, statistical significance was determined from a t test of paired data analysis.

Tracer accumulation studies. The rate of DNA synthesis by the explants was estimated by measuring the incorporation of [3H]thymidine into DNA extracted from explants solubilized in KOH. Incubations were carried out in medium containing 10 µmol of thymidine/dl and 200 µCi of [3Hmethyl]thymidine/dl (New England Nuclear, Boston, Mass.) The incubations were terminated by washing the explants on their supporting filter with ice-cold buffer over vacuum, then transferring directly to 0.5 N KOH or homogenizing in cold 5% perchloric acid. The radioactivity was measured with a liquid scintillation spectrometer and expressed as disintegrations per minute per microgram of DNA as measured by the method of Cerriotti (20) and modified by Keck (21) and Bonting and Jones (22). RNA synthesis was estimated from measurements of incorporation of [3H-5,6]uridine (New England Nuclear) into RNA. RNA was extracted in 0.3 N KOH for 1 h at 37°C from explant homogenates by the method of Munro and Fleck (23). Total RNA was measured by ultraviolet absorption at 260 and 232 μ m (24).

The rate of ⁴⁵Ca uptake was measured by immersing the filter with explants into a 40-mM Hepes (Sigma Chemical Co., St. Louis, Mo.) buffer at pH 7.4 containing 2 μ Ci/dl of ⁴⁵Ca (New England Nuclear) for a 4-min period. The incubation was terminated by removing the explants on their filter from the labeled buffer, then washing over a vacuum with ice-cold buffered saline, pH 6.5, containing 15 mM CaCl₂. The washed explants were then transferred promptly to 0.5 N KOH solubilizing solution. The rate of accumulation of [³²P]phosphate (New England Nuclear) was studied over a 16-min incubation in medium containing 20-200 μ Ci ³²P]sodium phosphate/dl. The incubation was terminated by washing the explants on their filter with ice-cold 10 mM phosphate-buffered saline over vacuum. The explants were promptly quick frozen in dry ice in preparation for their subsequent processing for determination of total and free inorganic phosphate content as described by Lippman and Tuttle (25) and modified by Short et al. (26). Radioactivity of ⁴⁵Ca and ³²P, measured by liquid scintillation spectrometry, are expressed per milligram of protein (27).

Metabolic inhibition studies. Cycloheximide (Sigma Chemical Co.) at a concentration of 50 μ g/ml was added with 1,25-OH)₂D₃ and was present for the duration of the incubation with the sterol. Actinomycin D (Calbiochem, San Diego, Calif.) was added to the cultures 20 min before the addition of the sterol at concentrations of 0.5 and 5.0 μ g/ml. Iodoacetamide, dinitrophenol, and ouabain (Sigma Chemical Co.) were selected as inhibitors of energy-dependent transport. After the appropriate period of incubation, the explants were transferred to either fresh medium or medium containing the inhibitor for an 8-min period before the transfer of the explants to medium containing either ⁴⁵Ca or [³²P]phosphate, with or without the inhibitor.

RESULTS

Explants of vitamin D-deficient rachitic chick ileum were maintained in organ culture to study the response of this tissue to vitamin D and its metabolites under controlled environmental conditions. One parameter of the tissue response to the vitamin measured was the rate of [³H]thymidine incorporation into DNA. In control explants linear rates of [³H]thymidine incorporation into DNA were observed up to 12 h after an initial 90-min period of equilibration (Fig. 1). Since the non-

FIGURE 1 Incorporation of [${}^{9}H$]thymidine (${}^{3}H$ -TdR) into DNA of intestinal explants from vitamin D-deficient chicks. The data are expressed as the cumulative incorporation of the label per microgram DNA from time zero. Open circles indicate the incorporation of label in the absence of 1,25-(OH)₂D₃. The triangles indicate the cumulative incorporation of label into explants to which 1,25 HCC had been added after 1.5 h of incubation in the presence of [${}^{3}H$]thymidine. The vertical bars indicate the standard error of the mean.

linear characteristics of the rate of [${}^{3}H$]thymidine incorporation into DNA may represent saturation of an intracellular thymidine pool, the influence of vitamin D metabolites on [${}^{3}H$]thymidine incorporation into DNA was studied after 90 min of preincubation with the label and linearity of incorporation of the label was achieved. In so doing, changes in the rate of transport of exogenous thymidine induced by the vitamins would be minimized. Under these conditions both 1,25-(OH)₂D₃ at 50 pg/ml and 25-OHD₃ at 20 ng/ml stimulate the rate of incorporation of [${}^{3}H$]thymidine into DNA of explants from rachitic chicks (Fig. 2). This increase in rate of incorporation is characterized by an initial delay of 1.5 h and a maximum response at 3 h (Fig. 1).

Two other parameters of the explant response to the calciferols measured were the rate of ⁴⁵Ca and [³²P]phosphate accumulation by the intestinal explants (Fig. 2). The rate of ⁴⁵Ca uptake was measured after a 4-min exposure to the isotope since this duration of incubation was demonstrated previously to best reflect the rate of Ca transport across the brush border (28). 3 h after the addition of either 1,25-OH)₂D₃ or 25-OHD₃ to the cultures a linear dependence of the rate of ⁴⁵Ca uptake on the log of the sterol concentration could be demonstrated. The rate of [³²P]phosphate uptake was studied after a 16-min exposure to the [³²P]phosphate containing medium. As seen in Fig. 3, this time point approximates the first demonstrable inflection in the rate of ³²P accumulation by the explants as either free

982 S. J. Birge and R. Miller

or organically bound phosphate and therefore could reflect the rate of phosphate transport across the brush border of the intestinal mucosa. This interpretation is supported by the ability of dinitrophenol and ouabain to inhibit this process. In addition, dinitrophenol inhibits the organification of phosphate whereas ouabain inhibits primarily the accumulation of ³²P as inorganic phosphate (Table I). After 8 min of incubation in the isotope, determination of the distribution ratio of the inorganic ³²P-phosphate as described by Rosenberg et al. (29) and defined as the ratio of radioactivity per milliliter of cell water and radioactivity per milliliter of incubation medium, indicates a value greater than 1.0 reaching 3.8 ± 0.4 at 16 min in explants from vitamin D-repleted chicks. In contrast, a distribution ratio of 1.8 ± 0.2 was achieved in explants from rachitic chicks after 1 h of incubation and 16 min of exposure to the tracer. The ability of the explants to concentrate phosphate against a concentration gradient, as reflected by the distribution ratio determined at 16 min of exposure to the isotope was 1.7 ± 0.1 and 1.6 ± 0.1 after 4 and 6 h. respectively, of incubation. Addition of either 1,25-(OH)₂D₃ at concentrations of 50 pg/ml and greater or 25-OHD₃ at concentrations of 20 ng/ml and greater

FIGURE 2 The dose-dependent response of vitamin Ddeficient chick intestinal explants to 1,25-(OH)₂D₃ (open circles) and 25-OHD₃ (closed circles). The data are expressed as the percent change from paired incubations in the absence of the sterols. The cumulative [³H]thymidine (³H-TdR) incorporation into DNA was measured after 1.5 h of preincubation with the label, and 3 h after the addition of the sterol. The initial rate of ⁴⁵Ca uptake was determined at 3 h of incubation. The initial rate of [³²P]phosphate accumulation was determined at 1.5 h of incubation. The vertical bars indicate the standard error of the mean.

FIGURE 3 The kinetics of $[^{32}P]$ phosphate accumulation by chick intestinal explants. Chicks were maintained on a vitamin D-deficient diet or the same diet supplemented with vitamin D for 3 wk. The explants were incubated for 90 min in the presence or absence of $1,25-(OH)_2D_3$ (60 pg/ml) before the determination of $[^{32}P]$ phosphate accumulation. The uptake of ^{32}P in the presence of ouabain (1 mM) followed an 8-min preincubation with the inhibitor. The solid lines indicate the total $[^{32}P]$ phosphate accumulation per mg protein. The interrupted lines indicate the accumulation of "free" inorganic phosphate. The vertical bars indicate the standard error of the means.

stimulates [³²P]phosphate accumulation without significantly altering the ratio between the inorganic and organic fractions. Cholecalciferol at concentrations as high as 1 μ g/ml was without effect. The rate of accumulation of inorganic phosphate was examined as a function of the incubation medium inorganic phosphate concentration. A double reciprocal plot of these data suggests that two saturable transport mechanisms for inorganic phosphate may be operating (Fig. 4). A low affinity transport mechanism ($K_m = 0.125$ mM) appears to respond to 1,25-(OH)₂D₃ with an increase in V_{max} of the transport process whereas the sterol does not appear to alter the V_{max} of the high affinity (K_m = 0.0047 mM) transport mechanism.

The role of transcription and translation in mediating the mucosal response to 1,25- $(OH)_2D_3$ was examined by observing the influence of actinomycin and cycloheximide on the explant response to 1,25- $(OH)_2D_3$. The explants were preincubated for 20 min in the presence of 5.0 μ g/ml of actinomycin D before the addition of the sterol. The explants were then incubated for an additional 3 h in the presence of 1,25- $(OH)_2D_3$ and actinomycin D before determining the rate of 4^5 Ca uptake. At an actinomycin D concentration of 0.5 μ g/ml, [³H]uridine incorporation into RNA was 18% of the control rate of incorporation for the last 2 h of the incubation. Actinomycin D did not block the vitamin-induced increase in the rate of 4^5 Ca uptake by the explants (Table II). To the contrary, actinomycin D stimu-

TABLE IThe Influence of Ouabain and Dinitrophenol on theAccumulation and Distribution of [32P]Phosphateby Intestinal Explants

Experimental conditions	Total 32P	Inorganic ³² P	P value
	% control ±SEM	% total ³² P ±SEM	
Control + 1,25-(OH) ₂ D ₃	100	81.8 ± 1.8	
(200 pg/ml)	165 ± 6	84.5 ± 2.1	< 0.1
Ouabain (0.1 mM)	54 ± 3	76.0 ± 3.5	< 0.05
DNP (0.5 mM)	68 ± 5	98.2 ± 4.1	< 0.01

Accumulation of $[^{32}P]$ phosphate (^{32}P) was measured after a 1.5-h incubation with or without $1,25-(OH)_2D_3$ and expressed as a percentage of control incubations. To determine the rate of ^{32}P uptake in the presence of the inhibitor, the explants were preincubated for 8 min with the respective inhibitor. The inorganic ^{32}P accumulated is expressed as a percentage of the total ^{32}P accumulated per milligram protein in 16 min. Student's *t* test was applied to the analysis of paired data. The *P* values apply to the differences from control of the percentage of inorganic ^{32}P of total ^{32}P .

lated control ⁴⁵Ca uptake and potentiated the 1,25-(OH)₂D₃-stimulated ⁴⁵Ca uptake. The requirement for protein synthesis in mediating the response to 1,25-(OH)₂D₃ was studied by measuring the rate of ⁴⁵Ca uptake after 3 h of incubation of the explants in the presence of the vitamin and cycloheximide at 50 $\mu g/$ ml. After a similar protocol, the rate of [³²P]phosphate accumulation was measured after 90 min of incuba-

FIGURE 4 Double reciprocal plot of the concentration of phosphate (1/s) and the rate of accumulation of phosphate per milligram protein per 16 min (1/y). The rate of accumulation was determined after 1.5 h of incubation in the presence or absence of $1,25-(OH)_2D_3$ (60 pg/ml). The vertical bars indicate the standard error of the mean.

 TABLE II

 Influence of Actinomycin D (5 µg/ml) on the Mucosal

 Response to 1,25-(OH)₂D₃ (50 pg/ml)

Experimental group	Percent of control	P value	
	%		
Control	100		
$+ 1,25-(OH)_2D_3$	145 ± 8	< 0.01	
+ Actinomycin D	146 ± 6	< 0.01	
+ $1,25-(OH)_2D_3$ + actinomycin D	190 ± 10	< 0.001	
No. of observations	14		

Chick intestinal explants were incubated for 20 min in medium with or without 50 μ g/ml of actinomycin D before transfer to medium with or without 1,25-(OH)₂D₃ (60 pg/ml) for an additional 3 h. The initial rate of ⁴⁵Ca uptake per milligram protein is expressed as a percentage of the uptake by control explants incubated without actinomycin D and 1,25-(OH)₂D₃. Statistical significance was determined from a *t* test of paired data analysis.

tion in the presence of the $1,25-(OH)_2D_3$. Cycloheximide blocked both the $1,25-(OH)_2D_3$ -induced increased rate of [³²P]phosphate accumulation and also the $1,25-(OH)_2D_3$ -induced increased rate of ⁴⁵Ca uptake (Table III).

The time course of the mucosal response to the vitamin D metabolites indicates that at 30 min after the addition of the sterols to the medium, the rate of [³²P]phosphate accumulation by the explants is significantly enhanced (P < 0.025). This response precedes by 30 and 150 min the vitamin-induced stimulation of ⁴⁵Ca uptake and the stimulation of [³H]thymidine incorpora-

TABLE III Influence of Cycloheximide on 1,25-(OH)₂D₃-Induced Stimulation of ³²P-Phosphate and ⁴⁵Ca Uptake

Culture conditions Cyclo. 1,25-(OH)2D3		³² P uptake		⁴⁵ Ca uptake	
		Control ±SEM	P value	Control ±SEM	P value
		%		%	
_	-	100		100	
+	_	110 ± 3	>0.1	138 ± 15	< 0.05
-	+	165 ± 8	< 0.001	170 ± 10	< 0.01
+	+	100 ± 6	>0.1	146 ± 9	< 0.05
No. pa	ired observati	ions 🤉	Ð	5	5

Chick intestinal explants were incubated for 20 min in medium with or without cycloheximide (Cyclo.) before transfer to medium with or without $1,25-(OH)_2D_3$ (200 pg/ml) for 3 h. The data indicate the uptake of $[^{32}P]$ phosphate in 16 min or the uptake of ^{45}Ca in 4 min per milligram protein expressed as the mean percentage change from control incubations. Statistical significance was determined from a t test of paired data analysis.

FIGURE 5 The response of explants from vitamin D-deficient chicks to 1,25-(OH)₂D₃. The measured radioactivity (dpm) per milligram protein or DNA is expressed as a percent change from control explants incubated without 1,25-(OH)₂D₃. Closed circles indicate the accumulation of [³²P]phosphate, the closed triangles indicate the rate of ⁴⁵Ca uptake, and the open triangles indicate the cumulative rate of [³H]thymidine incorporation into DNA. The vertical bars indicate the standard error of the mean.

tion into DNA (Fig. 5). Thus the initial action of the vitamin is the stimulation of the rate of intracellular phosphorus accumulation. To test the hypothesis that the increased rate of ⁴⁵Ca uptake and DNA synthesis are secondary to an increased intracellular inorganic phosphate concentration, the influence of extracellular phosphate concentration on these parameters and the mucosal response to 1,25-(OH)₂D₃ was studied. Increasing medium phosphate concentration from 0.5 to 3.0 mM for the 4.5-h duration of incubation increased [³H]thymidine incorporation into DNA (Table IV). Preincubation of the rachitic chick ileum explants in 3.0 mM phosphate for 3.0 h increased the initial rate of ⁴⁵Ca uptake from 0.5 mM phosphate buffer compared to ⁴⁵Ca uptake by explants preincubated at 0.5 mM phosphate for 3.0 h (Fig. 6). The increase in [³H]thymidine incorporation into DNA and ⁴⁵Ca uptake achieved by equilibrating the explants in 3.0 mM phosphate medium was equivalent to that observed in explants incubated with 1,25-(OH)₂D₃ at 0.5 mM phosphate. No additional stimulation of either parameter was obtained with 1,25-(OH)₂D₃ in explants incubated in 3.0 mM phosphate. Reducing the 3-h preincubation phosphate concentration from 0.5 to 0.05 mM significantly reduced the rate of ⁴⁵Ca uptake as well as the response to 1,25-(OH)₂D₃. Since 1,25-(OH)₂D₃ stimulation of ⁴⁵Ca uptake can be inhibited by iodoacetamide, the influence of this inhibitor on the high phosphateinduced stimulation of ⁴⁵Ca uptake was examined. At least 50% of the phosphate-induced stimulation of ⁴⁵Ca uptake was inhibited by 0.05 mM iodoacetamide (Table V).

The influence of phosphate on mucosal-serosal transport of Ca was measured in everted gut sacs obtained from rats maintained for 4 wk on a 0.1% phosphorus,

TABLE IV Effect of Phosphorus and 1,25-(OH)₂D₃ on ³H-TdR Incorporation into DNA

Culture conditions			
PO₄ concn.	1,25-(OH) ₂ D ₃	³ H-dpm/µg DNA	P value
mM		± SEM	
0.5	_	179 ± 5	
0.5	60 pg/ml	212 ± 6	< 0.01
3.0	_	238 ± 6	< 0.01
3.0	60 pg/ml	225 ± 7	< 0.01

Intestinal explants were incubated at either 0.5 or 3.0 mM phosphate and [^{3}H]thymidine (^{3}H -TdR) for the duration of the study. After 1.5 h the explants were transferred to the same medium with or without 1,25-(OH)₂D₃. Statistical significance was determined from a *t* test of paired data analysis.

1.5% Ca, vitamin D-free diet from the age of 3 wk (Table VI). 4 days before sacrifice the animals were parathyroidectomized. 2 days before sacrifice the animals were divided into four groups. The first group was maintained on a 0.1% P, 1.0% Ca diet without vitamin D. The second group of rats was placed on a 0.4% P, 3.0% Ca diet in an effort to abruptly increase the plasma phosphate and thereby minimizing the systemic effects of increased phosphate on the intestine. The third group of rats was maintained on 0.1% P, 1.0% Ca plus 200 U of vitamin D₃ orally 40 h before sacrifice. An increase in serum phosphorus was associated with an increase in the serosal:mucosal ratio of 45 Ca in the absence of vitamin D. Provision of phos-

FIGURE 6 The influence of phosphate on ⁴⁵Ca uptake by intestinal explants. The initial rate of ⁴⁵Ca uptake was measured in the standard 0.5 mM phosphate buffer after a 3-h preincubation in medium containing the designated concentration of phosphate. The open bars indicate incubations in the absence of $1,25-(OH)_2D_3$ and the hatched bars indicate incubations in the presence of $1,25-(OH)_2D_3$. The standard error of the mean is indicated by the vertical bars.

TABLE V Influence of Iodoacetamide (IA) on 1,25-(OH)₂D₃-Induced and Phosphate-Induced Stimulation of ⁴⁵Ca Uptake

	Culture conditions		45Ca uptake, (dpm/mg protein)			
			Percent	No. paired		
PO ₄ concn.	$1,25-(OH)_2D_3$	IA	control	observations	P value	
mM			%	n		
0.5	_	-	100			
0.5	-	+	113±3	24	< 0.05	
0.5	+	-	167 ± 6	13	< 0.001	
0.5	+	+	115 ± 5	13	< 0.05	
3.0	-	-	170 ± 9	11	< 0.005	
3.0	-	+	132 ± 9	11	< 0.05	

The explants were incubated for a total duration of 3.0 h under the conditions as noted. The initial rate of ⁴⁵Ca uptake was measured after the transfer of the explants to medium with or without iodoacetamide (0.05 mM) and expressed as the mean percentage change from the control incubation. Statistical significance was determined from a *t* test of paired data analysis.

phate and vitamin D to animals of the fourth group markedly enhanced the transport of Ca over that observed with the administration of vitamin D to animals on the phosphate-deficient diets.

DISCUSSION

Previous studies have demonstrated that vitamin D stimulates the proliferation of the intestinal mucosal epithelium (18, 30). Although an increase in cell number was not evident until 24 h after vitamin D administration, an increase in [³H]thymidine incorporation into intestinal mucosal DNA was observed at 4 h preceding

 TABLE VI

 Influence of Dietary Phosphate on the

 Intestinal Response to Vitamin D

Diet	-P -D	+P -D	-P + D	+P +D
n	15	15	18	13
S/M ratio	5.3 ± 0.2	5.9 ± 0.2	6.0 ± 0.3	7.4 ± 0.4
P value		< 0.05	< 0.05	< 0.005
Ca serum, mg/100 ml	11.8	11.1	11.6	11.8
P serum, mg/100 ml	3.7	5.0	4.7	6.5

The serosal:mucosal ⁴⁵Ca concentration ratio (S/M) was measured in everted intestinal sacs from rats maintained for 4 wk on a 0.1% phosphorus, 1.5% Ca, vitamin D-free diet. 4 days before sacrifice the animals were parathyroidectomized. 2 days before sacrifice the animals were divided into four dietary groups: (a) 0.1% P and 1.0% Ca (-P-D), (b) 0.4% P and 3.0% Ca (+P-D), (c) 0.1% P and 1.0% Ca plus 200 U of vitamin D orally 40 h before sacrifice (-P+D), (d) 0.4% P and 2.0% Ca plus vitamin D (+P+D). *n* indicates the number of animals in each group.

by 4-8 h a demonstrable increase in intestinal Ca absorption (18). It was postulated that the increase in cell proliferation was the consequence of a direct effect of the vitamin on intestinal epithelial cell and not secondary to systemic changes in mineral homeostasis. Maintenance of intestinal epithelium in organ culture facilitates the distinction between these two possible modes of vitamin D action in stimulating intestinal epithelial cell proliferation. Thus, the increase in [³H]thymidine incorporation into DNA observed in the present studies must be attributed to a direct effect of the vitamin on the cell. Although these findings are consistent with the stimulation of DNA synthesis by the vitamin, a reduction in endogenous thymidine generation or utilization without an increase in DNA synthesis cannot be excluded by these data.

The explants also demonstrated an increased rate of ⁴⁵Ca and [³²P]phosphate accumulation in response to the addition of either 1,25-(OH)₂D₃ or 25-OHD₃. The intestinal response to physiologic concentrations of 25-OHD₃ is of great interest since this metabolite of vitamin D has been considered to be biologically inactive at these concentrations (31, 32). There is considerable evidence that the 1α -hydroxylation reaction occurs exclusively in kidney and that further metabolism of 25-OHD₃ by intestine to 1,25-(OH)₂D₃ or some other potent biologically active sterol does not occur (33-35). Contamination of 25-OHD₃ with the biologically active isomer, 5,6-trans-25-hydroxycholecalciferol, is possible. However the potency of this sterol is comparable to that of 25-OHD₃ and therefore could not account for the observed response (36, 37). The presence in intestinal mucosa, as well as in essentially all other tissues, of a cytoplasmic protein with high affinity and specificity for 25-OHD₂ (15, 16) is additional evidence that this sterol may play a significant role in normal cell metabolism.

Earlier studies in rats (28) and confirmed in chick explants suggest that the initial rate of ⁴⁵Ca entry into the mucosa reflects the energy-dependent transport of Ca across the brush border into a readily saturable pool consistent with the cell cytosol Ca pool. The accumulation of phosphate has not been as extensively characterized. Saturation of an initial pool of [32P]phosphate does not appear to occur until 8-16 min. Distribution of tracer in cell water suggests an inorganic phosphate concentration comparable to that postulated for the cytoplasmic phosphate pool (31). The ability of metabolic inhibitors to block accumulation of intracellular phosphate suggests that the transport process is not only against a concentration gradient but does require metabolic energy. The increased rate of inorganic phosphate accumulation induced by the vitamin D sterols is associated with a parallel increase in organic phosphate. This response is consistent with a primary action of the sterols on phosphate entry into the cell as opposed to increased utilization and further suggests that, in rachitic explants, phosphate entry may be rate limiting in a variety of processes resulting in organification of phosphate.

The mechanism of 1,25-(OH)₂D₃ and 25-OHD₃ action on phosphate entry across the brush border remains uncertain. It should be noted (Fig. 3) that the bulk of phosphate transported across the brush border is independent of vitamin D and occurs by two saturable processes. The V_{max} of the low affinity process appears to be increased from 0.67 to 2.0 nmol/mg protein/16 min by 1,25-(OH)₂D₃ without significant alteration in K_m of 0.125 mM. The increase in the rate of phosphate accumulation in response to the addition of $1,25-(OH)_2D_3$ is blocked by incubation of the explants with cycloheximide. This inhibitor of protein synthesis at the level of translation also blocked the sterol-induced increase in ⁴⁵Ca uptake, suggesting that protein synthesis was required for the expression of the cells response to vitamin D. However, actinomycin D at a concentration of 5.0 μ g/ml, 10 times the concentration necessary to inhibit 82% of [³H]uridine incorporation in RNA of the explants, did not block the vitamin's stimulation of ⁴⁵Ca uptake. To the contrary, actinomycin D stimulated ⁴⁵Ca uptake in the control explants and had an additive effect on ⁴⁵Ca uptake in the explants incubated in the presence of submaximal concentrations of $1,25-(OH)_2D_3$. Additional studies are necessary to distinguish from the numerous interpretations of these findings that which correctly describes the observed data. The failure of actinomycin to inhibit the cellular response to 1,25-(OH)₂D₃ need not be interpreted as being inconsistent with the cycloheximide studies. The relatively short, 3-h incubation may not be sufficient to allow for the degradation of preexisting messenger-RNA from which the appropriate proteins can be synthesized for the expression of the mucosal response to 1,25-(OH)₂D₃. The vitamin may also stimulate translational events as has been postulated, in part, for the action of glucocorticoids (38, 39). These observations do suggest that *de novo* protein synthesis from a nuclear DNA template is not required for the initial manifestation of the cellular response to 1,25-(OH)₂D₃ as characterized by an increase in ⁴⁵Ca uptake and an increase in [32P]phosphate accumulation. Since the intestinal response to vitamin D is biphasic, the delayed response, greater in magnitude, may reflect an increase in DNA template activity and messenger RNA.

In studying the time course of the explant response to the vitamin D sterols, it is apparent that the earliest response is the stimulation of [³²P]phosphate accumulation which precedes the stimulation of ⁴⁵Ca uptake by 30 min and the increase in [³H]thymidine incorporation into DNA by 150 min. This observation raised the possiblity that the latter two events were either dependent upon or secondary to a primary action of the vitamins on phosphate transport and presumably the restoration of intracellular phosphate pools. To test this hypothesis, an effort was made to increase intracellular phosphate concentrations in the absence of vitamin D sterols by passive diffusion. Accordingly extracellular phosphate concentration was increased to 3.0 mM. Both ⁴⁵Ca uptake and DNA synthesis were enhanced under these conditions. The increase in ⁴⁵Ca uptake resulting from the high extracellular phosphate concentration was inhibited by iodoacetamide, similar to the iodoacetamide inhibition of the 1,25-(OH)₂D₃dependent increase in ⁴⁵Ca uptake. The failure of other investigators (40) to demonstrate inhibition of 1,25-(OH)₂D₃-stimulated ⁴⁵Ca uptake by iodoacetamide may be due to the fact that iodoacetamide at concentrations greater than 0.05 mM increases the basal rate of ⁴⁵Ca uptake. Reduction of the extracellular phosphate concentration to 0.05 mM resulted in a significant blunting of the intestinal response to 1,25- $(OH)_{2}D_{3}$ (Fig. 6). These observations suggest that intracellular phosphate concentration is an important determinant of the metabolically dependent transport of Ca across the brush border of the intestinal epithelial cell. These data extend earlier investigations concerning the facilitation by phosphate of calcium uptake in kidney cells (41) and calcium translocation in rat intestine (42). The failure of other investigators to observe a dependence of calcium translocation upon phosphate in vitamin D-deficient tissue may be attributed to the failure to alter intracellular phosphate concentrations as a result of short durations of incubation and low medium phosphate concentrations (43, 44).

The role of phosphate in mucosal-serosal transport of calcium was examined in the rat everted duodenal sac. The serum phosphorus of the phosphorusdepleted animal was raised abruptly over a 2-day period by the addition of phosphate or the treatment of the animal with oral vitamin D, or both. More prolonged phosphate feeding was avoided so that the adaptive increase in calcium absorption attributed to phosphorus depletion would not be altered. All animals were parathyroidectomized to eliminate the potential influence of this hormone on the transport process. The increase in serum phosphorus was limited by the above constraints and the additional constraint of maintaining normal serum calcium concentrations. Despite the limited increase in extracellular phosphate concentrations, calcium transport was increased in the absence of vitamin D and maximal stimulation of calcium transport required increased dietary phosphate in addition to vitamin D treatment. Again these data suggest that the intestinal response to vitamin D is dependent, at least in part, upon the availability of phosphate. The initial rate of ⁴⁵Ca uptake studied in the intestinal explants may well reflect a rate limiting step in the mucosal-serosal transport of calcium in the rachitic animal. Intracellular phosphate concentration may influence directly or indirectly through a high energy phosphate intermediate, such as ATP, this step in the transport process. Thus, stimulation by vitamin D of intracellular phosphate accumulation and the restoration of intracellular phosphate concentrations towards normal may play an important if not primary role in the ultimate expression of the cells' response to the vitamin D sterols.

REFERENCES

- 1. Harrison, H. E., and H. C. Harrison. 1961. Intestinal transport of phosphate: action of vitamin D, calcium and potassium. *Am. J. Physiol.* **201**: 1007–1012.
- 2. Kowarski, S., and D. Schachter. 1969. Effects of vitamin D on phosphate transport and incorporation into mucosal constituents of rat intestinal mucosa. *J. Biol. Chem.* 244: 211–217.
- 3. Wasserman, R. H., and A. N. Taylor. 1973. Intestinal absorption of phosphate in the chick: effect of vitamin D_3 and other parameters. *J. Nutr.* **103**: 586–599.
- 4. Taylor, A. N. 1974. *In vitro* phosphate transport in chick ileum: effect of cholecalciferol, calcium, sodium and metabolic inhibitors. *J. Nutr.* 104: 489-494.
- 5. Chen, T. C., L. Castillo, M. Korycka-Dahl, and H. F. DeLuca. 1974. Role of vitamin D metabolites in phosphate transport of rat intestine. J. Nutr. 104: 1056-1060.
- 6. Walling, M. W., and D. V. Kimberg. 1975. Effect of 1α ,25dihydroxyvitamin D₃ and Solanum Glaucophyllum on intestinal calcium and phosphate transport and on plasma Ca, Mg and P levels in the rat. *Endocrinology*. **97**: 1567–1576.
- Raisz, L. G. 1970. Physiologic and pharmacologic regulation of bone resorption. N. Engl. J. Med. 282: 909-916.
- Steele, T. H., J. E. Engle, Y. Tanaka, R. S. Lorenc, K. L. Dudgeon, and H. F. DeLuca. 1975. Phosphatemic action of 1,25-dihydroxy-vitamin D₃. Am. J. Physiol. 229: 489-495.
- Puschett, J. B., W. S. Beck, Jr., and A. Jelonek. 1975. Parathyroid hormone and 25-hydroxyvitamin D₃: synergistic and antagonistic effects on renal phosphate transport. Science (Wash. D. C.). 190: 473-475.
- Popovtzer, M. M., J. B. Robinett, H. F. DeLuca, and M. F. Holick. 1974. The acute effect of 25-hydroxycholecalciferol on renal handling of phosphorus. J. Clin. Invest. 53: 913-921.
- Puschett, J. B., J. Moranz, and W. S. Kurnick. 1972. Evidence for a direct action of cholecalciferol and 25hydroxycholecalciferol on the renal transport of phosphate, sodium and calcium. J. Clin. Invest. 51: 373-383.
- 12. Hughes, M. R., P. F. Brumbaugh, M. R. Haussler, J. E. Wergedal, and D. J. Baylink. 1975. Regulation of serum 1α ,25-dihydroxyvitamin D₃ by calcium and phosphate in the rat. *Science (Wash. D. C.).* 190: 578-580.
- Baxter, L. A., and H. F. DeLuca. 1976. Stimulation of 25hydroxyvitamin D₃ 1α-hydroxylase by phosphate depletion. *J. Biol. Chem.* 251: 3158–3161.
- 14. Steenbock, H., and D. C. Herting. 1955. Vitamin D and growth. J. Nutr. 57: 449-468.

- Haddad, J. G., and S. J. Birge. 1975. Widespread, specific binding of 25-hydroxycholecalciferol in rat tissues. J. Biol. Chem. 250: 299-303.
- Lawson, D. E. M., M. Charman, P. W. Wilson, and S. Edelstein. 1976. Some characteristics of new tissuebinding proteins for metabolites of vitamin D other than 1,25-dihydroxyvitamin D. Biochim. Biophys. Acta. 437: 403-415.
- Birge, S. J., and J. G. Haddad. 1975. 25-hydroxycholecalciferol stimulation of muscle metabolism. J. Clin. Invest. 56: 1100-1107.
- Birge, S. J., and D. H. Alpers. 1973. Stimulation of intestinal mucosal proliferation by vitamin D. Gastroenterology. 64: 977-982.
- Boyle, I. T., L. Miravet, R. W. Gray, M. F. Holick, and H. F. DeLuca. 1972. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxyvitamin D in nephrectomized rats. *Endocrinology*. 90: 605-608.
- Cerriotti, G. 1952. A microchemical determination of deoxyribonucleic acid. J. Biol. Chem. 198: 297-303.
- Keck, K. 1956. An ultra micro technique for the determination of deoxypentosenucleic acid. Arch. Biochem. Biophys. 63: 446-451.
- Bonting, S. L., and M. Jones. 1957. Determination of microgram quantites of deoxyribonucleic acid and protein in tissue grown *in vitro*. Arch. Biochem. Biophys. 66: 340-353.
- Munro, H. N., and A. Fleck. 1966. Recent developments in the measurement of nucleic acids in biological materials. *Analyst.* 91: 78-87.
- Fleck, A., and D. J. Begg. 1965. The estimation of ribonucleic acid using ultraviolet absorption measurements. *Biochim. Biophys. Acta.* 108: 333-339.
- Lipmann, F., and L. C. Tuttle. 1944. Acetyl phosphate: Chemistry, determination and synthesis. J. Biol. Chem. 153: 571-582.
- Short, E. M., H. J. Binder, and L. E. Rosenberg. 1973. Familial hypophosphatemic rickets: defective transport in inorganic phosphate by intestinal mucosa. *Science* (*Wash. D. C.*). 179: 700-702.
- Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
- Birge, S. J., S. C. Switzer, and D. R. Leonard. 1974. Influence of sodium and parathyroid hormone on calcium release from intestinal mucosal cells. J. Clin. Invest. 54: 702-709.
- Rosenberg, L. E., S. Downing, J. Durant, and S. Segal. 1966. Cystinuria-biochemical evidence for three genetically distinct diseases. J. Clin. Invest. 45: 365-371.
- Spielvogel, A. M., R. D. Farley, and A. W. Norman. 1972. Studies on the mechanism of action of calciferol. V. Turn-

over time of chick intestinal epithelial cells in relation to the intestinal action of vitamin D. *Exp. Cell Res.* **74**: 359–366.

- DeLuca, H. F., and H. K. Schnoes. 1976. Metabolism and mechanism of action of vitamin D. Annu. Rev. Biochem. 45: 631-666.
- 32. Wong, R. G., A. W. Norman, C. R. Reddy, and J. W. Coburn. 1972. Biological effects of 1,25-dihydroxychole-calciferol (a highly active vitamin D metabolite) in acutely uremic rats. J. Clin. Invest. 51: 1287-1291.
- Fraser, D. R. and E. Kodicek. 1970. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. *Nature (Lond.)*. 228: 764-766.
- 34. Norman, A. W., R. J. Midget, J. F. Myrtle, and H. G. Nowicki. 1971. Studies on calciferol metabolism. I. Production of vitamin D metabolite 4B from 25-OH-chole-calciferol by kidney homogenates. *Biochem. Biophys. Res. Commun.* 42: 1082-1087.
- Gray, R., I. Boyle, and H. F. DeLuca. 1971. Vitamin D metabolism: the role of kidney tissue. Science (Wash. D. C.). 172: 1232-1234.
- Holick, M. F., M. Garabedian, and H. F. DeLuca. 1972. 5,6-Trans-25-hydroxycholecalciferol: vitamin D analog effective on intestine of anephric rats. Science (Wash. D. C.). 176: 1247-1248.
- Rutherford, W. E., K. Hruska, J. Blondin, M. Holick, H. F. DeLuca, S. Klahr, and E. Slatopolsky. 1975. The effect of 5,6-trans vitamin D₃ on calcium absorption in chronic renal disease. J. Clin. Endocrinol. Metab. 40: 13-18.
- Kulkarni, S. B., M. S. Netrawali, D. S. Pradhan, and A. Sreenivasan. 1976. Action of hydrocortisone at a translational level in the rat liver. *Mol. Cell. Endocrinol.* 4: 195-203.
- Cox, R. F., and A. P. Mathias. 1969. Cytoplasmic effects of cortisol in liver. *Biochem. J.* 115: 777-787.
- 40. Freund, T., and F. Bronner. 1975. Stimulation in vitro by 1,25-dihydroxyvitamin D_3 of intestinal cell calcium uptake and calcium-binding protein. *Science (Wash. D. C.).* **190:** 1300-1301.
- Borle, A. B. 1970. Kinetic analyses of calcium movements in cell cultures. IV. Effects of phosphate and parathyroid hormone in kidney cells. *Endocrinology*. 86: 1389–1393.
- 42. Helbock, H. J., J. G. Forte, and P. Saltman. 1966. The mechanism of calcium transport by rat intestine. *Biochim. Biophys. Acta.* 126: 81-93.
- 43. Martin, D. L., and H. F. DeLuca. 1969. Calcium transport and the role of vitamin D. Arch. Biochem. Biophys. 134: 139-148.
- Adams, T. H., and A. W. Norman. 1970. Studies on the mechanism of action of calciferol. J. Biol. Chem. 245: 4421-4431.