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A B S T R A C T A variable metric optimization method
of numerical analysis has been used to recover known
distributions of intrapulmonary ventilation-perfusion
ratios from inert gas data. Hypothetical lungs were

simulated and corresponding inert gas retentions cal-
culated. By using error-free retentions for seven gases
and a 50-compartment model, it was possible to recover

distributions containing up to three modes accurately and
with greater efficiency than with other numerical meth-
ods. When random error of a magnitude consistent with
present analytical techniques was introduced into reten-
tion data, the recovered distributions differed qualita-
tively from the original ones. This resulted from the
ill-conditioned nature of the mathematical problem,
which makes a recovered distribution extremely sensitive
to small errors in retention. Thus, present levels of mea-

surement error represent an important limitation in cur-

rent techniques for deriving distributions from inert gas
measurements.

INTRODUCTION
Efforts to define the intrapulmonary distribution of venti-
lation-perfusion ratios are of great interest because of the
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pivotal role of ventilation-perfusion mismatching in most
abnormalities of oxygen and carbon dioxide exchange.
Potential advantages of measurements of inert gas re-
tention and excretion have been pointed out by Farhi
(1) and experimental studies leading to equivalent two-
or three-compartment models of the lungs have been
reported by several groups. Recently there has been
considerable interest in the technique developed by
Wagner, Saltzman, and West (2) for deriving essen-
tially continuous distributions of ventilation-perfusion
ratios (VA/Q's) from measurements of steady-state re-
tention and excretion of a small number of inert gases
of known solubility infused intravenously. The lung is
considered as a model having a large number of com-

partments with specified VA/Q's equally spaced on a
logarithmic scale. An iterative gradient method of nu-
merical analysis is used to derive the fractions of total
flow (or ventilation) for the compartments which are
most compatible with the experimental measurements
of retention (or excretion) in a least-squares sense. An
important element of the analysis is the incorporation of
the physiological constraint that compartmental flow (or
ventilation) fraction can never be negative. The num-
ber of iterations employed varies from 400 to 4,000 and
measurement errors are said to give rise to little inac-
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curacy, both when the distribution of VA/Q ratios is
normal and abnormal.

The present study was intended (a) to investigate
forms of numerical analysis which might be more effi-
cient than the constrained gradient method and (b) to
analyze in more detail the effect of unavoidable experi-
mental error in the measurement of retention on the re-
covery of known distributions of flow fraction (f) vs.

VA/Q. The findings with the more efficient techniques
indicate that qualitatively incorrect distributions are
recovered frequently when error is present, and that
current levels of measurement error are an important
limitation of the inert gas technique as thus far used.

METHODS
By using the equation system developed by Farhi (1),
steady-state retentions of seven inert gases were calculated
for assumed unimodal, bimodal, and trimodal distributions
Of f vs. VA/Q, with a 50-compartment model and VA/Q's
ranging from 0.001 and 100 and spaced equally on a loga-
rithmic scale. Blood-gas partition coefficients were chosen
to cover the range of solubilities currently used experi-
mentally (0.0060, 0.0405, 0.1110, 0.5800, 1.540, 2.490, and
12.48) and corresponded to the gases sulfur hexafluoride,
methane, ethane, cyclopropane, fluroxene, halothane, and di-
ethyl ether. Optimization methods of numerical analysis (3)
were used to evaluate the effectiveness with which the
original distributions could be recovered from the calculated
retentions, both with and without randomly generated error
in the values for retention. The mathematical approach was
to iterate to the best least-squares fit for the following
equation system, subject to the physiological constraint that
values of flow in all compartments have to be greater than
or equal to zero:

7 50 12 202

SSQ = [Ri - Xs + (VA/Q), _f + E f -i1

where

SSQ= sum of squares
Rt = fractional retention of inert gas i for a lung

containing j compartments
Xi = blood-gas partition coefficient at 370C of inert

gas i
(VA/Q) , = ventilation-perfusion ratio of compartment j

fj = fraction of cardiac output to compartment j

This equation is identical to that used by Wagner et al.
(2) although, in their program, the last term on the right

is generated by assuming a retention of 1.00 for an addi-
tional gas having a blood-gas partition coefficient of oo.
Our initial investigations used constrained optimization
methods to incorporate the physiological constraint of posi-
tive flow, e.g., the method of feasible directions and a
penalty function method (3). However, we subsequently
realized that the constraint could be handled more effectively
by a simple dummy variable substitution, yjt for f1, in the
original equation system. This substitution allows the use of
unconstrained optimization methods which are generally
agreed to be more efficient for problems of this type. Since
partial derivatives of the substituted equation are available,

the unconstrained minimization can be carried out with a
gradient method, a Newton-Raphson method, or a so-called
"variable metric" or "Davidon-Fletcher-Powell" method (4,
5). For regular functions, all three methods work quite
well. However, the function being evaluated has significant
eccentricity and gradient methods frequently have an ex-
tremely slow rate of convergence, i.e., the solution changes
perceptibly only over thousands of iterations. Because the
original equation system becomes quartic rather than quad-
ratic after the substitution of yj2 for f,, the calculations re-
quired by Newton-Raphson methods are complex and time-
consuming. The variable metric technique is a first-order
method in which the sequence of iterates converges quadrati-
cally to a minimum and has good stability for highly ec-
centric functions. This technique was found to be most
suitable for the present studies. On the basis of trials with
a variety of distributions, a minimum value of SSQ was
considered to have been reached when SSQ changed by
< 10-" on successive iterations.

RESULTS
Fig. 1 illustrates the effectiveness of the variable metric
method for recovering (a) unimodal, (b) unimodal
with right-to-left shunt, (c) bimodal, and (d) trimodal
distributions of f vs. VA/Q from error-free values of
retention. The findings are typical of 20 similar distri-
butions studied in detail. The relative efficiencies of the
variable metric and gradient methods are illustrated by
the fact that the gradient method required more than
eight times as much computer time to achieve the same
SSQfor the solution illustrated in panel (c).

Fig. 2 illustrates the effects of random experimental
error on the recovery of a known unimodal distribution
with a relatively small variance (mean VA/Q = 0.75,
log SD=0.7). The inset shows (a) an error-free re-
tention-X curve for the known distribution and (b) seven
points which differ slightly from the curve because of
random error of 2-4% in the measurement of retention.
The points were obtained by assuming that the experi-
mental error involved in the determination of each re-
tention is normally distributed with a mean of zero and
SD's of ±6% for the lowest solubility gas and ±2.5%
for other gases. These SD's were chosen to match the
analytical reproducibility of currently available chro-
matographic measurements (6). The main portion of
Fig. 2 shows the original f vs. VA/Q distribution and
the flow fractions recovered from seven error-free and
seven error-containing values of retention. The distri-
bution recovered from error-free values of retention co-
incides essentially exactly with the true distribution.
The distribution recovered from the values of retention
containing the small random error (dashed line) differs
qualitatively from the original distribution, being bi-
modal rather than unimodal over a two-decade range
of VA/Q. When 25 successive sets of data including
random error of the same magnitude were generated for
the same original distribution, a unimodal distribution
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FIGURE 1 Recovery of known distributions of f vs. VA/Q
from error-free data. The original distributions are shown
by solid lines and the recovered distributions by open circles.
Residual SSQ's varied from 10- to 10'. The recovered
model and original distributions agree closely in each case.
In additional studies, it was demonstrated that this agree-
ment was independent of the particular values specified for
VA/Q in the model.

was recovered only twice. 19 of the remaining 23 dis-
tributions were bimodal and four trimodal. Fig. 3 illus-
trates the effect of random error of the same magnitude
on (a) a unimodal log normal distribution with a larger
variance, (b) a unimodal log normal distribution with
a 10% right-to-left shunt, (c) a bimodal distribution, and
(d) a trimodal distribution.

Fig. 4 illustrates that small random error has essen-
tially the same effect on distributions recovered with the

FIGuRE 2 Recovery of a unimodal log normal distribution
in the presence and absence of random error in the measure-
ment of retention. See text for details. For clarity, only
three of the five decades of VA/Q included in the model are
shown. Both recovered distributions corresponded closely
with the original one in the decades just above and below
those illustrated.

FIGuRE 3 Recovery of the same four distributions illus-
trated in Fig. 1 in the presence of random error in the
measurement of retention. Original distributions and those
recovered from error-free values of retention are shown by
solid lines and open circles, as in Fig. 1. Distributions re-
covered from the error-containing data are shown by solid
circles and dashed lines and differ qualitatively from the
original ones. Residual SSQ's for these distributions varied
between 10' and 10.

contrained gradient method developed by Wagner et al.
(2). The original distribution is again unimodal log
normal with a mean VA/Q of 0.75 and a log SD of 0.7.
The bimodal distribution recovered with the variable
metric method in the presence of small random error is
the same as illustrated in Fig. 2; the residual sum of
squares is 2.05 X 10-'. The remaining three lines repre-
sent distributions recovered from the same set of error-
containing data when analyzed with the constrained
gradient method. When the analysis was terminated
arbitrarily at 2,000 iterations, the recovered distribution
appeared to correspond well with the original. However,

sso
ax GRADIENT 2,000 ITER 2.37xIO-4
O-< GRADIENT 18,00 ITER 2.19 xIO4

0.25 ---- GRADIENT 72,000 ITER 2.09 x*-4* VARIABLE METRIC 2.05 x10-4
0-HO ORIGINAL 4.72 WMO2

0 W 1.0 100
VA/6

FIGURE 4 Comparison of variable metric and constrained
gradient method for recovering the distribution illustrated
in Fig. 2 from error-containing data. See text for details.
Iter, iterations; SSQ, residual sum of squares.
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TABLE I

Comparison of Values of Retention Calculated Directly for Pairs of Distributions Illustrated in Figs. 2 and 3*

Fig. 2 Fig. 3a Fig. 3b Fig. 3c Fig. 3d
Inert gas

X Ri R2 Ri R2 Ri R2 Ri R2Ri R2

0.0060 0.0101 0.0102 0.0277 0.0286 0.0926 0.0837 0.0704 0.0758 0.0677 0.0642
0.0405 0.0626 0.0638 0.1180 0.1144 0.1528 0.1526 0.1931 0.1872 0.1821 0.1793
0.1110 0.1487 0.1528 0.2174 0.2228 0.2321 0.2341 0.2867 0.2878 0.2593 0.2666
0.5800 0.4425 0.4511 0.4589 0.4716 0.4976 0.4967 0.5462 0.5647 0.4665 0.4568
1.540 0.6566 0.6621 0.6179 0.6207 0.6906 0.6905 0.7305 0.7315 0.6209 0.6119
2.490 0.7476 0.7520 0.6906 0.6916 0.7726 0.7751 0.8064 0.7975 0.6896 0.6885

12.48 0.9311 0.9357 0.8755 0.8872 0.9379 0.9468 0.9506 0.9382 0.8611 0.8665

* These values were obtained by considering each distribution to represent a 50-compartment lung with VA/Q's
equally spaced on a logarithmic scale from 0.001 to 100. R1 = retention calculated directly for distribution shown
by solid line; R2 = retention calculated directly for distribution shown by dashed line. Corresponding values of RI
and R2 agree within -3% in 32 of the 35 sets of retentions shown.

since the residual SSQwas greater than with the variable
metric analysis, 2.37 vs. 2.05 X 10-, this distribution
was not the best one mathematically. After 18,000 itera-
tions the distribution was becoming bimodal. When the
gradient analysis was carried out through 72,000 itera-
tions, the distribution was clearly bimodal and the
residual sum of squares approached that obtained with
the variable metric method more closely, 2.09 vs. 2.05 X
10-'. The 72,000-iteration gradient solution required nine
times as much computer time as the variable metric
solution.

DISCUSSION

This study confirms the report from Wagner et al. (2)
that essentially continuous distributions of f vs. VA/Q
containing up to three modes can be recovered from
seven inert gas retentions if error-free values of re-
tention and solubility are available. The use of the
variable metric method of unconstrained optimization
seems advantageous from the viewpoint of converging
efficiently on the best least-squares solution. The study
also indicates, however, that random experimental er-
ror can have profound effects on the recovery of distri-
butions regardless of the form of numerical analysis em-
ployed. Figs. 2 and 3 illustrate the types of distributions
recovered routinely in the presence of error of the
magnitude achievable with current analytical tech-
niques. The differences between the original and re-
covered distributions suggest a need for caution in in-
terpreting detailed distributions calculated from pres-
ently available data. It should be noted that the solu-
tions presented here, like those of Wagner et al. (2),
have been obtained numerically and hence represent only
an approximation to the best least-squares solution. It
is possible that with greater computer accuracy and/or
improved algorithms, solutions obtained in the presence
of error might differ even more from the true solution.

As mentioned above, Wagner et al. (2) concluded that
experimental error had little effect on their solutions.
They presented results only for unimodal distributions,
for which retention values do not appear to have been
perturbed randomly. Our Fig. 4 indicates that reason-
able agreement for a unimodal distribution can be ob-
tained with the constrained gradient method if the solu-
tion is terminated sufficiently early. However, for an
unknown distribution, it is not clear how to determine
the appropriate termination point. Further, for bimodal
and trimodal distributions, our experience indicates that
the constrained gradient method, like the variable metric
method, produces qualitatively incorrect distributions
regardless of termination point.

It is also of interest that values of arterial Po2 and
Pcos calculated for original and recovered distributions
did not usually reflect the different shapes of the distri-
butions when error was present. For example, in 15 of
the 25 successive trials including random error for the
distribution illustrated in Fig. 2, values for arterial Po2
and Pco2 calculated for the recovered distribution were
within ±3 mmHg of the values calculated for the origi-
nal distribution. Calculated values for arterial Po2 and
Pcos also agreed within ±3 mmHg for the pairs of
distributions illustrated in Figs. 3a, b, and c. Thus, we
doubt that agreement of in vivo PoN and Pco2 with values
calculated from a recovered distribution is a useful test
for verifying the detailed shape of the distribution.

It is likely that the difficulties arising from experi-
mental error would be minimized if it were feasible to
reduce the magnitude of the error appreciably. For ex-
ample, when the original distribution in Fig. 2 was per-
turbed 25 succesive times with random error reduced
in magnitude by a factor of five, a unimodal distribution
was recovered in every case and all distributions cor-
responded closely with the original one. Similarly, bi-
modal distributions were always recovered when the
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original bimodal distribution in Fig. 3c was perturbed
ten successive times with random error also reduced in
magnitude by a factor of five.' Possible approaches for
achieving a fivefold reduction in error might include:
(a) development of more precise analytical techniques;
(b) multiple analyses of individual blood samples; (c)
averaging retentions obtained from multiple samples in
an individual patient, or single samples in a well-defined
patient group. The practicality of any of these approaches
is an open question. Since SEM= SD/IVn, a fivefold
reduction in error with existing techniques would pre-
sumably require averaging of 25 individual values. In
repeated studies in individuals, or in large numbers of
studies in specific groups, consideration would also have
to be given to biological variation.

The effects of random error reflect the fact that
qualitatively different VA/Q distributions can have
values for inert gas retentions which are nearly identi-
cal. This can be illustrated by considering each of the
distributions in Figs. 2 and 3 as representing a hypo-
thetical lung and calculating absolute values of retention
directly. Table I lists these values for the five pairs of
distributions illustrated. The differences in shape of
each pair of distributions correspond to differences in

1A preliminary publication (1974 Fed. Proc. 33: 439)
using constrained optimization techniques and indicating
good agreement between known distributions and those
recovered from data containing random error involved trials
where the magnitude of error was only a few tenths of a
percent.

gas retention of only a few percent of absolute values.
Thus, the recovery of distributions from retention-X data
is basically an ill-conditioned mathematical problem.
This circumstance seems to be a fundamental limitation
of the inert gas technique and will probably require de-
tailed consideration in further attempts to derive un-
known distributions from inert gas data.
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