The purpose of this study was to determine the physiological mechanism of lower esophageal sphincter (LES) relaxation. Circular muscle of the esophagus, LES, and stomach were evaluated for their inhibitory response to electrical stimulation during a maintained tonic contraction produced by a superfusion of acetylcholine and physostigmine. Only the circular muscle of the distal esophagus showed an inhibitory response to electrical stimulation. The maximal inhibition of LES muscle was 63.9±5.9 (mean±SE)% of the acetylcholine produced tension and occurred at 80 V. Upper esophageal and gastric muscle were not inhibited. The inhibitory response of the LES muscle was antagonized by tetrodotoxin and hexamethonium but not by other specific antagonists. Adrenergic nerve destruction following 6-hydroxydopamine also did not abolish the LES inhibition. These data indicate that the distal esophagus, at the zone of the manometrically determined LES, is characterized by a nonadrenergic neural inhibitory system. We suggest that these nerves may mediate LES relaxation.
Arthur Tuch, Sidney Cohen
Usage data is cumulative from November 2024 through November 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 182 | 20 |
| 64 | 3 | |
| Scanned page | 344 | 6 |
| Citation downloads | 98 | 0 |
| Totals | 688 | 29 |
| Total Views | 717 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.