Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The Ontogenesis of Human Fetal Hormones: I. GROWTH HORMONE AND INSULIN
S. L. Kaplan, … , M. M. Grumbach, T. H. Shepard
S. L. Kaplan, … , M. M. Grumbach, T. H. Shepard
Published December 1, 1972
Citation Information: J Clin Invest. 1972;51(12):3080-3093. https://doi.org/10.1172/JCI107135.
View: Text | PDF

The Ontogenesis of Human Fetal Hormones: I. GROWTH HORMONE AND INSULIN

  • Text
  • PDF
Abstract

The content and concentration of immunoreactive growth hormone (GH) were measured in 117 human fetal pituitary glands from 68 days of gestation to term and in the pituitary glands of 20 children 1 month to 9 yr of age. Physicochemical and immunochemical properties of GH of fetal pituitary glands and GH from adult pituitary glands were indistinguishable by disc gel electrophoresis, immunoelectrophoresis, starch gel electrophoresis, and radioimmunoassay techniques. In the fetal pituitary gland, the GH content rose from mean levels of 0.44±0.2 μg at 10-14 wk of gestation, to 9.21±2.31 μg at 15-19 wk, to 59.38±11.08 μg at 20-24 wk, to 225.93±40.49 μg at 25-29 wk, to 577.67±90 μg at 30-34 wk, and to 675.17±112.33 μg at 35-40 wk. There was a significant positive correlation between growth hormone content of the pituitary and gestational age, crown-rump length, and the weight of the pituitary gland.

Authors

S. L. Kaplan, M. M. Grumbach, T. H. Shepard

×

Full Text PDF | Download (2.71 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts