Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

Activation energy for water diffusion across the toad bladder: evidence against the pore enlargement hypothesis
Richard M. Hays, … , Nicholas Franki, Roy Soberman
Richard M. Hays, … , Nicholas Franki, Roy Soberman
Published May 1, 1971
Citation Information: J Clin Invest. 1971;50(5):1016-1018. https://doi.org/10.1172/JCI106572.
View: Text | PDF
Research Article

Activation energy for water diffusion across the toad bladder: evidence against the pore enlargement hypothesis

  • Text
  • PDF
Abstract

The activation energy (EA) for the diffusion of water across the epithelial cell layer of the toad bladder was determined in the absence and presence of vasopressin. An experimental approach was employed which minimized the effects of unstirred layers and the thick supporting layer of the bladder on the measurement of water diffusion. EA in the absence of vasopressin was 11.7 ±1.4 kcal·mole-1; after vasopressin it was 10.6±1.1 kcal·mole-1. The difference between the two values was not significant. The results are consistent with an increase in the number rather than the size of aqueous channels in the cell membrane, a finding which differs from the generally held view that the hormone increases the radius of pores in the membrane.

Authors

Richard M. Hays, Nicholas Franki, Roy Soberman

×

Loading citation information...
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts